Project description:This study investigated early host reactions to implanted materials to predict successful tissue regeneration with implant. Three kinds of scaffold, i.e., non-coat, collagen-coated, and PMB-coated porous polystylene scaffolds were implanted subcutaneously in mice dorsal area. Those scaffolds were used as bio-incomopatible materials, appropriate materials for tissue regeneration (bio active), and inappropriate to regenration (bio-inert) scaffolds. Seven days after implantation, scaffolds were explanted and total RNA was isolated from infiltrated host cells into scaffold by laser microdissection. Gene expressions of cells in collagen- and PMB-coated scaffold were normalized using results of non coat scaffold. Genes with more than 2-fold difference between collagen and PMB were picked up and narrowed to related keywords; inflammation, angiogenesis, wound healing, and mcrophage polarization. Among those genes, interluekin (IL)-1beta which promote both inflammation and wound healing was up-regulated in collagen-coated scaffold. On the other hand, IL-10 which suppress both inflammation and wound healing was up-regulated in PMB-coated scaffold. Angiogenesis-promoting genes were up-regulated and angiogenesis suppressve genes were suppressed in collagen. Up-regulation of IL-1b and the angiogenesis-relating genes inside the porous scaffolds are the possibly important factors for controlling tissue regeneration. Three-condition experiment, host cells infiltrated in non coat (reference), collagen-coated, and PMB-coated scaffolds. Two-microarray condition experiments, collagen vs. non coat and PMB coat vs. non coat. Hybridization: 2 replicates. Scanning: 3 replicates. Biological experiments: once.
Project description:This study investigated early host reactions to implanted materials to predict successful tissue regeneration with implant. Three kinds of scaffold, i.e., non-coat, collagen-coated, and PMB-coated porous polystylene scaffolds were implanted subcutaneously in mice dorsal area. Those scaffolds were used as bio-incomopatible materials, appropriate materials for tissue regeneration (bio active), and inappropriate to regenration (bio-inert) scaffolds. Seven days after implantation, scaffolds were explanted and total RNA was isolated from infiltrated host cells into scaffold by laser microdissection. Gene expressions of cells in collagen- and PMB-coated scaffold were normalized using results of non coat scaffold. Genes with more than 2-fold difference between collagen and PMB were picked up and narrowed to related keywords; inflammation, angiogenesis, wound healing, and mcrophage polarization. Among those genes, interluekin (IL)-1beta which promote both inflammation and wound healing was up-regulated in collagen-coated scaffold. On the other hand, IL-10 which suppress both inflammation and wound healing was up-regulated in PMB-coated scaffold. Angiogenesis-promoting genes were up-regulated and angiogenesis suppressve genes were suppressed in collagen. Up-regulation of IL-1b and the angiogenesis-relating genes inside the porous scaffolds are the possibly important factors for controlling tissue regeneration.
Project description:Microarray analysis was used to evaluate expression differences from a single donor human bone marrow stromal cells (hBMSCs) as a function of varied polymer-based tissue engineering scaffolds. These scaffolds include polycaprolactone (PCL) nanofibers (PCL_NF), films (PCL_SC), poly D,L-lactic acid (PDLLA) nanofibers (PDLLA_NF), films (PDLLA_SC), tissue culture polystyrene (TCPS) and TCPS with osteogenic supplements (TCPS_OS). The results revealed that scaffold structure was able to significantly affect gene expression, with nanofiber scaffolds inducing similar gene expression patterns to hBMCSs cultured with osteogenic media. A library of scaffolds prepared from polycaprolactone or poly D,L-lactic acid was sythesized and cultured with hBMSCs for 14 days with RNA extracted from cells on Day 1 and Day 14. Gene expression analysis was performed using BRB ArrayTools. SC = spun coat, BNF = big nanofiber, TCPS = tissue culture polystyrene, TCPS+OS = tissue culture polystyrene with osteogenic supplements. This data forms is part of a pending publication: Baker et al. Ontology Analysis of Global Gene Expression Differences of Human Bone Marrow Stromal Cells Cultured on 3D Scaffolds or 2D Films and is a subset of the 72 array data referenced in ( Kumar et al. The determination of stem cell fate by 3D scaffold structures through the control of cell shape, Biomaterials (2011) 32, 9188-9196.) The 72 array data set is submitted separately to GEO as GSE50743.
Project description:Microarray analysis was used to evaluate expression differences from a single donor human bone marrow stromal cells (hBMSCs) as a function of varied polymer-based tissue engineering scaffolds. The results revealed that gene expression patterns of hBMSCs grouped according to scaffold. A library of scaffolds prepared from polycaprolactone (PCL) or poly D,L-lactic acid (PDLLA) was sythesized and cultured with hBMSCs for 14 days with RNA extracted from cells on Day 1 and Day 14. Gene expression analysis was performed using BRB ArrayTools. GF = gas foam, SC = spun coat, BNF = big nanofiber, SNF = small nanofiber, FFF = free-form fabricated, TCPS = tissue culture polystyrene, TCPS+OS = tissue culture polystyrene with osteogenic supplements. The 72 arrays data was used previously in the publication: Kumar et al. The determination of stem cell fate by 3D scaffold structures through the control of cell shape, Biomaterials (2011) 32, 9188-9196. A companion data set of 24 arrays was submitted separately to GEO as GSE50744 and will be referenced to Baker et al. Ontology Analysis of Global Gene Expression Differences of Human Bone Marrow Stromal Cells Cultured on 3D Scaffolds or 2D Films
Project description:Microarray analysis was used to evaluate expression differences from a single donor human bone marrow stromal cells (hBMSCs) as a function of varied polymer-based tissue engineering scaffolds. These scaffolds include polycaprolactone (PCL) nanofibers (PCL_NF), films (PCL_SC), poly D,L-lactic acid (PDLLA) nanofibers (PDLLA_NF), films (PDLLA_SC), tissue culture polystyrene (TCPS) and TCPS with osteogenic supplements (TCPS_OS). The results revealed that scaffold structure was able to significantly affect gene expression, with nanofiber scaffolds inducing similar gene expression patterns to hBMCSs cultured with osteogenic media.
Project description:This study sought to provide a novel ex vivo model for analyzing healing kinetics and gene expression of primary human gingival fibroblasts (hGF) within collagen scaffolds. Sponge type and gel type scaffolds with and without platelet-derived growth factor-BB (PDGF) were assessed in an hGF containing matrix. Four samples were analyzed; gel w/ and w/o PDGF and scaffold w/ and w/o PDGF
Project description:A goal of tissue engineering is to produce a scaffold material that will guide cells to differentiate and regenerate functional replacement tissue at the site of injury. Little is known about how cells respond on a molecular level to tissue engineering scaffold materials. In this work we used oligonucleotide microarrays to interrogate gene expression profiles associated with cell-biomaterial interactions. We seeded collagen-glycosaminoglycan meshes, a widely used tissue engineering scaffold material, with human IMR-90 fibroblasts and compared transcript levels with control cells grown on tissue culture polystyrene. Genes involved in cell signaling, extracellular matrix remodeling, inflammation, angiogenesis and hypoxia were all activated in cells on the collagen-GAG mesh. Understanding the impact of a scaffold on attached cells will facilitate the design of improved tissue engineering materials.
Project description:VECELL 3-D insert is newly developed culture scaffold with collagen-coated ePTFE (expanded polytetrafluoroethylene) mesh. Effects of VECELL 3-D insert on the functionalities of HepG2, human hepatocellular carcinoma cell line, were analyzed.
Project description:we compared the skin transcriptomes of the black- and white-coated region from the Boer and Macheng Black crossbred goat with black head and white body using the Illumina RNA-Seq method. Six cDNA libraries derived from skin samples of the white coat region (n = 3) and black coat region (n = 3) were constructed from three full-sib goats. On average, we obtained approximately 76.5 and 73.5 million reads for each skin sample of black coat and white coat, respectively, of which 75.39% and 76.05% reads were covered in the genome database. Our study provides insight into the transcriptional regulation of two distinct coat color that might serve as a key resource for understanding coat color pigmentation of goat.
Project description:Biomaterial augmentation of surgically repaired rotator cuff tendon tears aims to improve the high failure rates (~40%) of traditional repairs. Biomaterials that can alter cellular phenotypes through the provision of microscale topographical cues are now under development. We aimed to systematically evaluate the effect of topographic architecture on the cellular phenotype of fibroblasts from healthy and diseased tendons. Electrospun polydioxanone scaffolds with fiber diameters ranging from 300 to 4000 nm, in either a highly aligned or random configuration, were produced. Healthy tendon fibroblasts cultured for 7 days on scaffolds with highly aligned fibers demonstrated a distinctive elongated morphology, whilst those cultured on randomly configured fibers demonstrated a flattened and spread morphology. The effect of scaffold micro-architecture on the transcriptome of both healthy and diseased tendon fibroblasts was assessed with bulk RNA-seq. Both healthy (n=3) and diseased tendon cells (n=3) demonstrated a similar transcriptional response to architectural variants. Gene set enrichment analysis revealed that large diameter (≥ 2000 nm) aligned scaffolds induced an upregulation of genes involved in cellular replication and a downregulation of genes defining inflammatory responses and cell adhesion. Similarly, PDPN and CD248, markers of inflammatory or ‘activated’ fibroblasts, were downregulated during culture of both healthy and diseased fibroblasts on aligned scaffolds with large (≥ 2000 nm) fiber diameters. In conclusion scaffold architectures resembling that of disordered type III collagen, typically present during the earlier phases of wound healing, resulted in tendon fibroblast activation. Conversely, scaffolds mimicking aligned diameter collagen I fibrils, present during tissue remodelling, did not activate tendon derived fibroblasts. This has implications for the design of scaffolds used during rotator cuff repair augmentation.