Project description:Adolescent binge alcohol exposure has been previously shown to have long-lasting effects on the expression of hypothalamic genes that regulate the stress response, even in the absence of subsequent adult alcohol exposure. Those data suggested that alcohol can induce permanent gene expression changes, potentially through epigenetic modifications. Importantly, epigenetic modifications can be transmitted to future generations therefore, in these studies we investigated the effects of adolescent binge alcohol exposure on hypothalamic gene expression patterns in the F1 generation offspring. It has been well documented that maternal alcohol exposure during fetal development can have devastating neurological consequences. However, less is known about the consequences of maternal and/or paternal alcohol exposure outside of the gestational time frame. Here, we exposed adolescent male and female rats to a repeated binge EtOH exposure paradigm and then mated them in adulthood. Hypothalamic samples were taken from the offspring of these animals at postnatal day (PND) 7 and subjected to a genome-wide microarray analysis followed by qRT-PCR for selected genes. Importantly, the parents were not intoxicated at the time of mating and were not exposed to EtOH at any time during gestation therefore, the offspring were never directly exposed to EtOH. Our results showed that the offspring of alcohol-exposed parents had significant differences in the expression of hypothalamic genes that mediate neurogenesis and synaptic plasticity during neurodevelopment, genes important for directing chromatin remodeling, posttranslational modifications or transcription regulation, as well as genes involved in regulation of obesity and reproductive function. These data demonstrate that repeated binge alcohol exposure during pubertal development can potentially have detrimental effects on future offspring even in the absence of direct fetal alcohol exposure.
Project description:Adolescent binge alcohol exposure has been previously shown to have long-lasting effects on the expression of hypothalamic genes that regulate the stress response, even in the absence of subsequent adult alcohol exposure. Those data suggested that alcohol can induce permanent gene expression changes, potentially through epigenetic modifications. Importantly, epigenetic modifications can be transmitted to future generations therefore, in these studies we investigated the effects of adolescent binge alcohol exposure on hypothalamic gene expression patterns in the F1 generation offspring. It has been well documented that maternal alcohol exposure during fetal development can have devastating neurological consequences. However, less is known about the consequences of maternal and/or paternal alcohol exposure outside of the gestational time frame. Here, we exposed adolescent male and female rats to a repeated binge EtOH exposure paradigm and then mated them in adulthood. Hypothalamic samples were taken from the offspring of these animals at postnatal day (PND) 7 and subjected to a genome-wide microarray analysis followed by qRT-PCR for selected genes. Importantly, the parents were not intoxicated at the time of mating and were not exposed to EtOH at any time during gestation therefore, the offspring were never directly exposed to EtOH. Our results showed that the offspring of alcohol-exposed parents had significant differences in the expression of hypothalamic genes that mediate neurogenesis and synaptic plasticity during neurodevelopment, genes important for directing chromatin remodeling, posttranslational modifications or transcription regulation, as well as genes involved in regulation of obesity and reproductive function. These data demonstrate that repeated binge alcohol exposure during pubertal development can potentially have detrimental effects on future offspring even in the absence of direct fetal alcohol exposure. Male and female Wistar rats were purchased from Charles River Laboratories (Wilmington, MA) at weaning (postnatal day (PND) 23) and allowed to acclimate for 7 days after arrival. Animals were handled for 5 min./once/day beginning at PND 30. Pubertal EtOH exposure began on PND 37, which is defined as peri-puberty. Animals were undisturbed following the first exposure of our binge EtOH exposure paradigm until PND 68 (late puberty/early adult) at which time they received a second exposure to the same treatment paradigm. During the duration of the experiment, males and females were separately housed in pairs on a 12:12 light/dark cycle with lights on at 0700 h with food and water available ad libitum. Binge Exposure Paradigm and Treatment Design. Rats were handled 5min./once/day for 7 d prior to treatment to control for nonspecific stress responses. At 37 d, animals were given 3 g/kg EtOH (20% v/v in tap water; N = 3/sex), or tap water alone (N = 3/sex), once/day via oral gavage at 10:00 AM to avoid disrupting normal feeding patterns. This process was repeated according to the following schedule for a total duration of 8 consecutive days: 3 d EtOH, 2 d tap water, 3 d EtOH. Control animals were given tap water alone once/day for 8 consecutive days. Our previous studies showed that this repeated binge-pattern EtOH paradigm does not affect body weight/growth curves and consistently results in blood alcohol concentrations (BAC) of 150-180 mg/dl in males and 210-240 mg/dl in females. We and others have previously used this paradigm as a model for the pattern of binge alcohol consumption observed in adolescents and BAC achieved are similar to those observed in humans following a binge drinking episode . After peri-pubertal treatments, animals were left undisturbed in their home cage until PND 68 when each group was again exposed to their respective treatment (i.e. control or binge EtOH. We waited 24 hours after the last dose of EtOH to ensure that blood alcohol concentrations in the parents were undetectable at the time of mating (data not shown). Animals were grouped into mating pairs: binge male + binge female (N = 3 pairs); water male + water female (N = 3 pairs). All of the females gave birth to 12-16 pups approximately 28 d after being housed with a male, indicating that conception took place approximately 6 d after pairing; therefore, the pups were never directly exposed to alcohol at any time. At PND 7 pups were deeply anesthetized on ice and sacrificed. Brains were rapidly removed, the hypothalamus microdissected on ice, and then stored in -80ºC until further processing for a genome-wide analysis on hypothalamic total RNA samples using a chip-based microarray (Southern California Genotyping Consortium, SCGC, Illumina Rat Ref-12). The PND 7 time point was chosen because the extent of rat neurodevelopment at PND 7 is roughly equivalent to that of a human infant at birth
Project description:Prenatal alcohol exposure can cause long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations found in FASD. Here, we demonstrated that maternal binge alcohol consumption alters the expression of genes involved in nervous system development. Maternal binge alcohol consumption alters several important genes that are involved in nervous system development in the mouse hippocampus at embryonic day 18 (ED18)
Project description:Prenatal alcohol exposure can cause long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations found in FASD. Here, we demonstrated that maternal binge alcohol consumption alters the expression of genes involved in nervous system development.
Project description:Drugs of abuse including nicotine and alcohol elicit their effect by stimulating the mesocorticolimbic dopaminergic system. There is a high incidence of nicotine dependence in alcoholics. To date only limited data is available on the molecular mechanism underlying the action of alcohol and nicotine in the human brain. This study utilised gene expression screening to identify genes sensitive to chronic alcohol abuse within the ventral tegmental area of the human brain. Keywords: gene expression, brain, alcohol abuse, human, ventral tegmental area
Project description:This study examined if p53 was essential in the brain’s response to alcohol using a mouse model of fetal alcohol spectrum disorder (FASD) that involved the equivalent of a single day of binge drinking. We quantified the amount of cell death in specific brain regions and examined the levels of gene expression in these regions 8 hours after alcohol exposure using RNA-seq. Contrary to expectations, we found that cell death still occurred at the same or greater level in the brains of mice lacking p53 as in normal mice. However, we also found evidence that the lack of p53 greatly affected the expression of groups of genes involved in brain cell communication and metabolism.
Project description:Prevailing dogma maintains that Fetal Alcohol Syndrome (FAS) craniofacial and neurological birth defects are the sole consequence of maternal alcohol use during pregnancy. Using a physiologically relevant mouse model, we contrasted the incidence of alcohol-related growth and craniofacial defects between offspring derived from maternal, paternal, and dual parental alcohol exposures. Geometric morphometric analyses reveal that maternal, paternal, and dual parental exposures each induce unique craniofacial malformations and program dose-dependent increases in microcephaly, particularly in male offspring. Notably, dual parental exposures do not exhibit additive or synergistic effects; instead, our transcriptomic analyses demonstrate that each treatment programs distinct sex-specific changes in gene expression within the developing brain. Our data are the first to demonstrate that male drinking is a plausible driver of alcohol- related birth defects and that epidemiological examination of male alcohol consumption may help explain the enormous variation in FAS clinical presentations and severity.
Project description:Alcohol abuse can induce brain injury and neurodegeneration, and recent evidence shows the participation of immune receptors toll-like in the neuroinflammation and brain damage. We evaluated the role of miRNAs as potential modulators of the neuroinflammation associated with alcohol abuse and the influence of the TLR4 response. Using mice cerebral cortex and next-generation sequencing (NGS), we identified miRNAs that were differentially expressed in the chronic alcohol-treated versus untreated WT or TLR4-KO mice. We observed a differentially expression of miR-183 Cluster (C) (miR-96/-182/-183), miR-200a and miR-200b, which were down-regulated, while mirR-125b was up-regulated in alcohol-treated WT versus (vs.) untreated mice. These miRNAs modulate targets genes related to the voltage-gated sodium channel, neuron hyperexcitability (Nav1.3, Trpv1, Smad3 and PP1-γ), as well as genes associated with innate immune TLR4 signaling response (Il1r1, Mapk14, Sirt1, Lrp6 and Bdnf). Functional enrichment of the miR-183C and miR-200a/b family target genes, revealed neuroinflammatory pathways networks involved in TLR4 signaling and alcohol abuse. The changes in the neuroinflammatory targets genes associated with alcohol abuse were mostly abolished in the TLR4-KO mice. Our results show the relationship between alcohol intake and miRNAs expression and open up new therapeutically targets to prevent deleterious effects of alcohol on the brain.
Project description:The aim of the study is to investigate the role and mechanisms of tuberous sclerosis complex 1 (TSC1) and mechanistic target of rapamycin complex 1 (mTORC1) in alcohol associated liver disease Hepatic RNA profiles of WT and hepatic TSC1 KO mice fed with alcohol or control diet using Gao binge alcohol model.
Project description:Chronic and excessive binge-like drinking is a risk factor to pathological cognitive decline and dementia, but the mechanism underlying the prolonged and lasting effect of alcohol even in abstainers remains elusive. This study investigates how ethyl alcohol directly results in metabolic reprograming and persistent physiological changes in brain cells that underlies such effect.