Project description:Molecular mechanisms underlying the differentiation of brain mural cells from neural crest are poorly understood. We found that activation of Notch3 signaling in human pluripotent stem cell-derived neural crest (using lentiviral overexpression of the human Notch3 intracellular domain, N3ICD) was sufficient to direct the differentiation of mural cells.
Project description:The aim of the dataset was to study on genome-wide level the effect of Notch inhibition in gene expression on neural crest differentiation of human embryonic stem cells under chemically defined conditions. Total RNA from hESCs, hESC-derived neural crest, hESC-derived neural crest+DAPT, and hESC-derived neural stem cells was collected and compared at their global gene expression level. Samples from 3 biological replicates were analysed.
Project description:Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Melanocyte dysfunction leads to pigmentation defects including albinism, vitiligo, and piebaldism and is a key feature of systemic pathologies such as Hermansky-Pudlak (HP) and Chediak-Higashi (CH) Syndromes. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Surprisingly, suppression of BMP signaling does reduce neural crest yield. Subsequent differentiation of hESC-derived melanocyte precursors under defined conditions yields pure populations of pigmented cells matching the molecular and functional properties of adult melanocytes. Melanocytes from patient-specific iPSCs faithfully reproduce the ultrastructural features of the HP- and CH-specific pigmentation defects with minimal variability across lines. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. Total RNA obtained from a timecourse of Dual SMAD Inhibition (DSi), Neural Crest (NC), and Melanocyte (BE) differentiation of human embryonic stem cells in triplicate.
Project description:Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNASeq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role to determine chondrocyte fate.
Project description:Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Melanocyte dysfunction leads to pigmentation defects including albinism, vitiligo, and piebaldism and is a key feature of systemic pathologies such as Hermansky-Pudlak (HP) and Chediak-Higashi (CH) Syndromes. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Surprisingly, suppression of BMP signaling does reduce neural crest yield. Subsequent differentiation of hESC-derived melanocyte precursors under defined conditions yields pure populations of pigmented cells matching the molecular and functional properties of adult melanocytes. Melanocytes from patient-specific iPSCs faithfully reproduce the ultrastructural features of the HP- and CH-specific pigmentation defects with minimal variability across lines. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. Total RNA obtained from embryonic stem cells (ESCs), ESC-derived melanocyte progenitors, ESC-derived mature melanocytes, primary melanocytes, and disease-specific induced pluripotent stem cell-derived melanocytes.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells. Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of primary mouse Neural Plate Border Stem Cells (pNBSCs) derived from E8.5 mouse embryos and radial glia-type stem cells and neural crest progenitors derived thereof. The data provided reveal that pNBSCs can be directed into defined neural cell types of the CNS- and neural crest lineage.
Project description:Molecular mechanisms underlying the differentiation of brain mural cells from neural crest are poorly understood. We found that activation of Notch3 signaling in human pluripotent stem cell-derived neural crest (using lentiviral overexpression of the human Notch3 intracellular domain, N3ICD) was sufficient to direct the differentiation of mural cells. We used Notch3 ChIP-sequencing to identify cis-regulatory elements directly bound by the Notch3 transcriptional activation complex in this system.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of (i)NBSCs and CNS- and neural crest progeny derived thereof. The former comprise radial glia-type stem cells, while the latter are neural crest and mesenchymal stem cell-like cells. The data provided reveal that (i)NBSCs can be directed into defined neural lineages and that iNBSCs pass through successive developmental stages. These data support the notion that it is possible to reprogram human adult cells into expandable, multipotent NBSCs that define a novel embryonic neural stem cell population in human and mouse.
Project description:Sivakumar2011 - Notch Signaling Pathway
Notch is a transmembrane receptor that mediates local cell-cell communication and coordinates a signaling cascade. It plays a key role in modulating cell fate decisions throughout the development of invertebrate and vertebrate species and the misregulation leads to a number of human diseases.
References:
Notch signaling: from the outside in.
Notch signaling in hematopoiesis and early lymphocyte development.
An overview of the Notch signalling pathway.
Notch and cancer: best to avoid the ups and downs.
Notch signaling: control of cell communication and cell fate.
This model is described in the article:
A systems biology approach to model neural stem cell regulation by notch, shh, wnt, and EGF signaling pathways.
Sivakumar KC, Dhanesh SB, Shobana S, James J, Mundayoor S.
Omics: a Journal of Integrative Biology. 2011; 15(10):729-737
Abstract:
The Notch, Sonic Hedgehog (Shh), Wnt, and EGF pathways have long been known to influence cell fate specification in the developing nervous system. Here we attempted to evaluate the contemporary knowledge about neural stem cell differentiation promoted by various drug-based regulations through a systems biology approach. Our model showed the phenomenon of DAPT-mediated antagonism of Enhancer of split [E(spl)] genes and enhancement of Shh target genes by a SAG agonist that were effectively demonstrated computationally and were consistent with experimental studies. However, in the case of model simulation of Wnt and EGF pathways, the model network did not supply any concurrent results with experimental data despite the fact that drugs were added at the appropriate positions. This paves insight into the potential of crosstalks between pathways considered in our study. Therefore, we manually developed a map of signaling crosstalk, which included the species connected by representatives from Notch, Shh, Wnt, and EGF pathways and highlighted the regulation of a single target gene, Hes-1, based on drug-induced simulations. These simulations provided results that matched with experimental studies. Therefore, these signaling crosstalk models complement as a tool toward the discovery of novel regulatory processes involved in neural stem cell maintenance, proliferation, and differentiation during mammalian central nervous system development. To our knowledge, this is the first report of a simple crosstalk map that highlights the differential regulation of neural stem cell differentiation and underscores the flow of positive and negative regulatory signals modulated by drugs.
This model is hosted on BioModels Database and identified by: BIOMD0000000396.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.