Project description:This work aimed to examine the regulation of apoptosis-related genes in kidney cortex and kindey medulla one and seven days after administration of 177Lu-octreotate with and without A1M and of A1M alone. C57BL/6N mice were injected with either 177Lu-octreotate + PBS, A1M + PBS or 177Lu-octreotate + A1M. Also, a control group was sham-treated with saline. Half of the animals in each treatment and control group were terminated by cardiac puncture one-day post-injection (1 dpi), and the remaining animals were terminated at 7dpi. Kidneys were dissected at the time of termination, snap-frozen in liquid nitrogen and stored at -80°C.
Project description:This work aimed to examine the regulation of apoptosis-related genes in GOT1 tumors one and seven days after administration of 177Lu-octreotate with and without A1M and of A1M alone. At study start, 22 adult female Balb/c GOT1 tumor-bearing mice were divided into four groups of six animals that received 30 MBq 177Lu-octreotate or 5 mg/kg A1M, or co-treatment with both 177Lu-octreotate and A1M by i.v. injection. Also, a control group was sham-treated with saline. Half of the animals in each treatment and control group were terminated by cardiac puncture one-day post-injection (1 dpi), and the remaining animals were terminated at 7dpi. Tumor tissues were dissected at the time of termination, snap-frozen in liquid nitrogen and stored at -80°C.
Project description:The radiolabelled somatostatin analogue 177Lu-octreotate is a promising treatment option for malignant neuroendocrine tumors that overexpress somatostatin receptors. The human small intestine neuroendocrine tumor cell line GOT1 and Medullary thyroid carcinoma model GOT2 have shown promising treatment response to 177Lu-octreotate in xenografted mice. In clinical studies, however, only low cure rates have been achieved to date. In vitro and preclinical in vivo studies have shown that irradiation can up-regulate the expression of somatostatin receptors and thereby give an increased uptake of 177Lu-octreotate. The cellular processes that underlie positive treatment response to 177Lu-octreotate are otherwise largely unknown. Genome-wide analysis of tumor cell responses in this successful mouse model offers a venue to identify critical treatment parameters and to optimize clinical effectiveness of 177Lu-octreotate therapy. Combining 177Lu-octreotate with other anti-tumor agents has also been proposed as a strategy for optimization. Some studies have shown synergistic effects in tumor cell killing and volume reduction The hedgehog signaling pathway is involved in embryonic development and tissue regeneration and can be/is abnormally activated in various cancers. Inhibition of the hedgehog signaling pathway has yielded promising therapeutic effects on NE tumors and may potentially enhance the effects of 177Lu-octreotate treatment in patients.
Project description:The radiolabelled somatostatin analogue 177Lu-octreotate is a promising treatment option for malignant neuroendocrine tumors that overexpress somatostatin receptors. The human small intestine neuroendocrine tumor cell line GOT1 and Medullary thyroid carcinoma model GOT2 have shown promising treatment response to 177Lu-octreotate in xenografted mice. In clinical studies, however, only low cure rates have been achieved to date. In xenografted tumors, the human stromal components have been replaced with mouse stroma, which may have an impact in the treatment response of the xenografts.
Project description:Introduction Iodine-131 (131I) is frequently used in nuclear medicine. Unbound or released 131I accumulate in the thyroid gland and may be detrimental to normal thyroid function. The aim of the present study was to identify biomarkers for 131I exposure in rat thyroid tissue and to assess the effect on thyroid function. Methods Thirty six male Sprague Dawley rats were i.v. injected with 150 µl saline solution containing 9.0, 88, 170, 260, 340, 760, 1300, or 4700 kBq (group A-H) 131I, or mock-treated with 150 µl saline solution only, and killed at 24 h after injection. Total RNA was extracted from individual thyroid tissue samples thyroids and mRNA levels were determined with the Agilent microarray platform. Results Estimated absorbed doses in treatment groups A-H was 0.0058, 0.057, 0.11, 0.17, 0.22, 0.5 Gy, 0.8 Gy, and 3 Gy. Totally, 429 transcripts were identified with a fold change fold change ⥠1.5 and adjusted p-value ⤠0.01. A trend with downregulation of thyroid hormone biosynthesis associated genes (e.g. thyroglobulin, thyroid peroxidase, the sodium-iodine symporter) was identified, but only statistically significant after 0.0058 and 0.22 Gy. Three transcripts coding for isoform 1 of the DBP protein showed a pattern with monotonous decrease in downregulation with absorbed dose between 0.0058-0.22 Gy. Changes in Dbp expression were not statistically significant between 0.5-3 Gy. However, a trend with downregulation at 0.5 and 0.8 Gy and upregulation and 3 Gy was identified. Previously, 131I (0.85-17 Gy) and 211At (0.023-32 Gy) exposure resulted in upregulation of Dbp in mice thyroid tissue 24 h after administrations. Additionally, a monotonous decrease in Dbp downregulation has been identified of in mouse kidney tissue at 8 and 12 months after 177Lu-octreotate administrations. Conclusion Conclusively, the Dbp gene is a promising candidate biomarker gene for exposure to 131I and possibly other internal radiation emitters. Further studies should be performed to establish how Dbp expression vary with dose-rate, absorbed dose, time after administration, different radiation qualities, and the function of Dbp. Total RNA was isolated from fresh-frozen individual thyroid tissue samples (Sprague Dawley rats). Each sample was run once. Four rats received the same treatment. Control samples (from non-irradiated rats) are included.
Project description:Background and Purpose: Cardiotoxicity is a well-known adverse effect of radiation therapy. Measurable abnormalities in the heart function indicate advanced and often irreversible heart damage. Therefore, early detection of cardiac toxicity is necessary to delay and alleviate the development of the disease. The present study investigated long-term serum proteome alterations following local heart irradiation using a mouse model with the aim to detect biomarkers of radiation-induced cardiac toxicity. Materials and Methods: Serum samples from C57BL/6J mice were collected 20 weeks after local heart irradiation with 8 Gy or 16 Gy X-ray; the controls were sham-irradiated. The samples were analyzed by quantitative proteomics based on data-independent acquisition mass spectrometry. The proteomics data were further investigated using bioinformatics and ELISA. Results: The analysis showed radiation-induced changes in the level of several serum proteins involved in the acute phase response, inflammation and cholesterol metabolism. We found significantly enhanced expression of pro-inflammatory cytokines (TNF-, TGF-, IL-1 and IL-6) in the serum of the irradiated mice. The level of free fatty acids, total cholesterol, low density lipoprotein (LDL) and oxidized LDL was increased whereas that of high density lipoprotein was decreased by irradiation. Conclusions: This study provides information on systemic effects of heart irradiation. It elucidates a radiation fingerprint in the serum that may be used to elucidate adverse cardiac effects after radiation therapy.
Project description:Aristolochic acid (AA) is a major ingredient in several Chinese herbs that exhibits a wide range of pharmacological effects. Recently, clinical reports and experimental studies have demonstrated that AA causes renal toxicities, acute renal failure and interstitial fibrosis.However, the molecular mechanism underlying AA nephrotoxicity is not yet fully understood. Embryonic stem cells (ESCs) are pluripotent cells isolated from early embryos, which have highly undifferentiated potential and are capable of differentiating into all kinds of body tissues and organs. It has been reported that ESCs are sensitive to drug stimulation, and thus may serve as important tools for in vitro assessment of drug toxicity. We aimed to identify accurate biomarkers of AA-induced renal toxicity on ESCs. Genomics analysis was performed to screen the changes in gene expression levels of ESCs following treatment with AA, in order to determine the potential biological processes in which AA induces renal toxicity.