Project description:The goal of this study was to compare the expression level of the whole genome of two wine yeast strains highly differing in their sulfite production (High producer strain: 10281A; Low producer strain: 1764A). Conditions maximizing SO2 production were selected: nitrogen rich media (425 mg/l assimilable nitrogen) and low temperature (16°C). This transcriptomic analysis was performed during the sulfite production phase, just after the entry in stationary phase. This analysis is part of a global work, aiming at the identification of the molecular basis of sulfite production by wine yeasts through physiologic, transcriptomic and genetic studies.
Project description:Comparative genome-wide gene expression analysis between two industrial wine yeast hybrid strains belonging to the species S. cerevisiae x S. Kudriavzevii, in natural must fermentations.
Project description:By an evolutionary approach based on long-term culture on gluconate as the sole carbon source, a Saccharomyces cerevisiae wine strains with enhanced flux through the pentose phosphate (PP) pathway were obtained. One of these evolved strains, ECA5, exhibited several novel properties with great potential for wine making, including a higher than wild-type fermentation rate and altered production of acetate and aroma compounds. To describe the mechanisms underlying this complex phenotype, we performed a comparative analysis of transcriptomic profiles between ECA5 and its ancestral strain, EC1118, under low nitrogen, wine fermentation conditions.
Project description:The goal of this study was to compare the expression level of the whole genome of two wine yeast strains highly differing in their sulfite production (High producer strain: 10281A; Low producer strain: 1764A). Conditions maximizing SO2 production were selected: nitrogen rich media (425 mg/l assimilable nitrogen) and low temperature (16°C). This transcriptomic analysis was performed during the sulfite production phase, just after the entry in stationary phase. This analysis is part of a global work, aiming at the identification of the molecular basis of sulfite production by wine yeasts through physiologic, transcriptomic and genetic studies. Two strains compared in the same conditions with biological replicates following a dye-swap design.
Project description:The aim of this study is to phenotype a collection of 27 S. cerevisiae commercial wine strains growing within temperatures (4-45ºC) in both minimal media (SD) and synthetic must (SM) and, taking into account µmax value, to select two strains with divergent phenotype in their capacity to grow at low temperature. To confirm this differential phenotype, we design a competition between both strains during wine fermentations. As expected, at low temperature fermentation, the strain showing a good performance out-competes to the strain growing badly in cold. Finally we aimed to decipher the molecular basis underlying this divergent phenotype by analyzing the genomic, proteomic and transcriptomic differences between both strains at low temperature (15ºC) and optimum temperature (28ºC).
Project description:To characterize the ecological interactions among S. cerevisiae strains coming from the same geographical area, we examined the fitness of two natural isolates from San Giovese grapes, alone or in competition, in synthetic wine must (SWM). We performed genome-wide analyses in order to identify the genes involved in yeast competition and cooperation.
Project description:To characterize the ecological interactions among S. cerevisiae strains coming from the same geographical area, we examined the fitness of two natural isolates from San Giovese grapes, alone or in competition, in synthetic wine must (SWM). We performed genome-wide analyses in order to identify the genes involved in yeast competition and cooperation.