Project description:A propolis-resistant Saccharomyces cerevisiae mutant strain was obtained using an evolutionary engineering strategy based on successive batch cultivation under gradually increasing propolis levels. The mutant strain FD 11 was selected at a propolis concentration that the reference strain could not grow at all. Whole-genome transcriptomic analysis of FD11 was performed with respect to its reference strain to determine differences in gene expression levels between the two strains. Saccharomyces cerevisiae
Project description:Pre-mRNA splicing is vital for the proper function and regulation of eukaryotic gene expression. Saccharomyces cerevisiae has been used as a model organism for studies of RNA splicing because of the striking conservation of the spliceosome and its catalytic activity. Nonetheless, there are relatively few annotated alternative splice forms, particularly when compared to higher eukaryotes. Here, we describe a method to combine large scale RNA sequencing data to accurately discover novel splice isoforms in Saccharomyces cerevisiae. Using our method, we find extensive evidence for novel splicing of annotated intron-containing genes as well as genes without previously annotated introns and splicing of transcripts that are antisense to annotated genes. By incorporating several mutant strains at varied temperatures, we find conditions which lead to differences in alternative splice form usage. Despite this, every class and category of alternative splicing we find in our datasets is found, often at lower frequency, in wildtype cells under normal growth conditions. Together, these findings show that there is widespread splicing in Saccharomyces cerevisiae.
Project description:Expression analysis of Saccharomyces cerevisiae TAF5 and taf5 temperature conditional mutants grown at permissive and non-permissive temperature. Investigation of whole genome gene expression level changes in Saccharomyces cerevisae taf5-17, taf5-45, taf5-408 and taf5-10.4 mutants, compared to the wild-type strain. The mutations engineered into the strains confer temperature conditional growth. The mutants analyzed in this study are further described in Layer et. al., 2010. Direct Transactivator-Transcription Factor IID (TFIID) Contacts Drive Yeast Ribosomal Protein Gene Transcription. Journal of Biological Chemistry.
Project description:Investigation of whole genome gene expression level changes in three S. cerevisiae Y55 mutants, compared to the wild-type strain. The UV-induced mutations enable the mutant strains to ferment high-gravity maltose faster than the WT. The mutants analyzed in this study are further described in Baerends, R.J.S., J.L. Qiu, L. Gautier, and A. Brandt. A high-throughput system for screening of fast-fermenting Saccharomyces cerevisiae strains. Manuscript in preparation.