Project description:We investigated salinity adaptation during the migration from freshwater to seawater of European eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water and sea water adapted silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.
Project description:The goal of this study was to gain a better understanding of the genetic background of gonadal maturation of the European eel and to use gene expression profiles to identify predictive markers for broodstock selection that can be measured in blood samples. To find leads for maturation markers we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Among the best leads were two key players in steroidogenesis, namely pP450c17 and liver receptor homolog-1.
Project description:We investigated the transition from juvenile yellow to the adult sexually maturing, migrating silver eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water, yellow and silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from high (Tiber river, Italy) and low pollution (Bolsena lake, Italy) environments. Gene expression profiling was performed using an European eel-specific oligo-DNA microarray of 14,913 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:Gene expression analyses have been performed on brain tissue of sexually mature and immature males using microarrays. 60 eels were transferred to two independent temperature controlled recirculation water units connected to two 500 L cylindro-conical tanks (30 fish per tank) where the fish were acclimated to seawater (35 PSU salinity) over a 2 week period.Eel males in one of the seawater units were injected intramuscularly every week over a 140 day period with 2000 IU hCG/kg (human chorionic gonadotropin, Sigma–Aldrich Chemical) dissolved in 0.9% saline to induce sexual maturation. Eel males in the other recirculation unit were injected weekly over the same period with 0.9% NaCl (vehicle).At the end of the experiment, eels were anesthetized in a solution of 0.1mg/L tricaine methanesulfonate (MS-222, Sigma Aldrich) and blood samples collected into heparinized syringes. Tissues (brain, including the olfactory bulbs, telencephalon, diencephalon and mesencephalon, and gonads) were collected from sexually immature (n=12) and sexually mature males (n=12).RNA was extracted from brain tissue of a total of 24 (12 mature and 12 immature) males. For each individual, RNA was extracted separately for olfactory bulb, telencephalon and diencephalon. Because RNA concentrations of olfactory bulb, telencephalon and diencephalon were below the amount needed for microarray analysis, a separate experiment for each part of the brain was not possible. Therefore, we combined equal concentrations of olfactory bulb, telencephalon and diencephalon as a single brain sample for each individual.Microarray analysis was conducted using an European eel-specific array consisting of a total of 14,913 probes based on a large collection of high-throughput transcriptomic sequences (Pujolar et al. 2012). Probe sequences and further details on the microarray platform can be found on the GEO database under accession number GPL15124. Data was normalized using a quantile normalization procedure using R (http://www.r-project.org)
Project description:The goal of this study was to gain a better understanding of the genetic background of gonadal maturation of the European eel and to use gene expression profiles to identify predictive markers for broodstock selection that can be measured in blood samples. To find leads for maturation markers we performed a pilot deep-sequencing transcriptome analysis of ovarian tissue derived from a yellow eel, a prepubertal silver eel and a post-spawning matured eel. Among the best leads were two key players in steroidogenesis, namely pP450c17 and liver receptor homolog-1. Pilot deep-sequencing transcriptome analysis of ovary from a yellow, a prepubertal silver and a post-spawning matured eel