Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from high (Tiber river, Italy) and low pollution (Bolsena lake, Italy) environments. Gene expression profiling was performed using an European eel-specific oligo-DNA microarray of 14,913 probes based on single-colour detection (Cyanine-3 only). Microarrays were scanned with Agilent scanner G2565BA (barcode on the left, DNA on the back surface, scanned through the glass) at a resolution of 5 microns; all slides were scanned twice at two different sensitivity settings (XDRHi 100% and XDRLo 10%); the scanner software created a unique ID for each pair of XDR scans and saved it to both scan image files. Feature Extraction (FE) 9.5 used XDR ID to link the pairs of scans together automatically when extracting data. The signal left after all the FE processing steps have been completed is ProcessedSignal that contains the Multiplicatively Detrended, Background-Subtracted Signal.
Project description:We investigated salinity adaptation during the migration from freshwater to seawater of European eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water and sea water adapted silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants. A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from lowly-polluted Wijmeers pond at Uitbergen (Belgium), highly-polluted Hazewinkel pond at Willebroek (Belgium), extremely-polluted Dessel-Schotel canal at the locations of Schotel (Belgium) and low polluted Bolsena lake (Italy) environments.
Project description:Nanometric revolution is underway, promising technical innovations in a wide range of applications, leading to a potential boost in environmental discharges. Nanoparticle propensity to be transferred throughout trophic chains and to generate toxicity was mainly assessed in primary consumers while a lack of knowledge for higher trophic levels persists. This study focused on a predatory fish, the European eel Anguilla anguilla exposed to gold nanoparticles (AuNP, 10 nm, PEG-coated) for 21 days at three concentration levels in food: 0 (NP0), 1 (NP1) and 10 (NP10) mg Au.kg-1 . Transfer was assessed by gold quantification in eel tissues and transcriptomic responses in the liver and brain were revealed by a high-throughput RNA-sequencing approach. Eels fed at NP10 presented an erratic feeding behaviour while gold quantification only indicated transfer to intestine and kidney of NP1 exposed eels. RNA-Sequencing was performed in NP0 and NP1 eels. A total of 258 genes and 156 genes were significantly differentially transcribed in response to AuNP trophic exposure in the liver and brain, respectively. Enrichment analysis highlighted modifications in the immune system-related processes in the liver. In addition, results pointed out a shared response of both organs regarding 13 genes, most of them being involved in immune functions. This finding may shed light into the mode of action and toxicity of AuNP in fish.
Project description:We investigated the transition from juvenile yellow to the adult sexually maturing, migrating silver eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water, yellow and silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.