Project description:Pulmonary metastasis is the main cause of medical failure and death of osteosarcoma patients. Our recent study identified IRX1 as a potential metastasis-driving gene in osteosarcoma. Studies showed that IRX1 can promote the migration, invasion and anoikis resistance of osteosarcoma cells. We generated 143B stable IRX1 knockdown and control cell lines, and found that IRX1 knockdown can inhibit the pulmonary metastasis of 143B cells in orthotopic mouse osteosarcoma model. Expression microarrays are performed in143B-shCtrl and 143B-shIRX1 cells to study the mechanism of IRX1 on promoting metastasis of osteosarcoma
Project description:Pulmonary metastasis is the main cause of medical failure and death of osteosarcoma patients. Our recent study identified IRX1 as a potential metastasis-driving gene in osteosarcoma. Studies showed that IRX1 can promote the migration, invasion and anoikis resistance of osteosarcoma cells. We generated 143B stable IRX1 knockdown and control cell lines, and found that IRX1 knockdown can inhibit the pulmonary metastasis of 143B cells in orthotopic mouse osteosarcoma model.
Project description:To identify target genes regulated by ALKBH5 in osteosarcoma, we silenced the expression of ALKBH5 in osteosarcoma cell line-143B and tested its effect on 143B transcriptome.
Project description:Seven human osteosarcoma cell lines (U2OS, U2OS/MTX300, HOS, MG63, 143B, ZOS, ZOSM) and the human osteoblast hFOB1.19 were included in the study. Microarray based circRNA expression profiles were acquired using the Arraystar Human circRNA Array (8x15K, Arraystar). We identified circRNAs differentially expressed in human osteosarcoma cell lines compared to human osteoblast hFOB1.19 (control).
Project description:Analysis of common pediatric osteosarcoma cell lines SaOS2, U2OS and 143B and two patient derived xenograft samples in comparison of osteoblast cell line hFOB1.19.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.