Project description:Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the facial mesenchyme, composed of neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium We performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm, and present microarray data detailing expression patterns within these embryonic cell populations. Mouse emrbyos were harvested at developmental stage E8.5 and single cells were captured from the neuroepithilium, neural crest, and paraxial mesoderm. RNA was extracted, labelled, and quantified using the Mouse ST-l microarray.
Project description:Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the facial mesenchyme, composed of neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. For these 11 samples, we used a single cell isolation and cDNA generation protocol followed by a standard Affymetrix labeling protocol to better define the gene expression states of the early E8.5 pioneer neural crest and paraxial mesoderm cells. Using a combination of statistical and expression level filtering criteria, we have identified expression patterns present within these embryonic cell populations. The genes identified through this study are highly enriched for known critical genes as well as many genes not previously known to be cell type specific at this stage.
Project description:Neural crest cells are migratory progenitor cells that contribute to nearly all tissues and organs throughout the body. Their formation, migration and differentiation are regulated by a multitude of signaling pathways, that when disrupted can lead to disorders termed neurocristopathies. While work in avian and amphibian species has revealed essential factors governing the specification and induction of neural crest cells during gastrulation and neurulation in non-mammalian species, their functions do not appear to be conserved in mice, leaving major gaps in our understanding of neural crest cell formation in mammals. Here we describe Germ Cell Nuclear Factor (GCNF/Nr6a1), an orphan nuclear receptor, as a critical regulator of neural crest cell formation in mice. Gcnf null mutant mice, exhibit a major disruption of neural crest cell formation. The purpose of this experiment is to examine gene expression changes in response to Gcnf mutation in E9.0 mouse embryos.
Project description:Neural crest cells are migratory progenitor cells that contribute to nearly all tissues and organs throughout the body. Their formation, migration and differentiation are regulated by a multitude of signaling pathways, that when disrupted can lead to disorders termed neurocristopathies. While work in avian and amphibian species has revealed essential factors governing the specification and induction of neural crest cells during gastrulation and neurulation in non-mammalian species, their functions do not appear to be conserved in mice, leaving major gaps in our understanding of neural crest cell formation in mammals. Here we describe Germ Cell Nuclear Factor (GCNF/Nr6a1), an orphan nuclear receptor, as a critical regulator of neural crest cell formation in mice. Gcnf null mutant mice, exhibit a major disruption of neural crest cell formation. The purpose of this experiment is to examine gene expression changes in response to Gcnf mutation in anterior and posterior cranial regions of E9.25 mouse embryos.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with primary Neural Plate Border Stem Cells (pNBSCs) isolated from neural folds of E8.5 mouse embryos. Here we provide single cell RNA-sequencing data of neural tissue derived from two E8.5 mouse embryos. After manual isolation and enzymatic separation E8.5 neural tissue was single cell sorted and RNA sequencing was performed following the Smart-seq2 protocol. In sum, cultured pNBSCs and E8.5 neural tube cells share a similar regional identity and expression signature suggesting that pNBSCs might correspond to an endogenous progenitor in this area of the developing brain.
Project description:We analyzed wildtype and miR-302 knockout embryos at E7.5 and sorted neural crest using Wnt1-Cre at E8.5 and Sox9 at E9.5 to capture miRNA differences during neural crest development
Project description:We analyzed wildtype and miR-302 knockout embryos at E7.5 and sorted neural crest using Wnt1-Cre at E8.5 and Sox9 at E9.5 to capture transcriptomic differences during neural crest development
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells. Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of primary mouse Neural Plate Border Stem Cells (pNBSCs) derived from E8.5 mouse embryos and radial glia-type stem cells and neural crest progenitors derived thereof. The data provided reveal that pNBSCs can be directed into defined neural cell types of the CNS- and neural crest lineage.