Project description:Comparasion of each cell mRNA expression pattern Mouse fibroblasts were directly converted into brown adipocytes (dBAs) by transducing some transcription factors. To characterize the dBAs more in detail, RNA extracted from the mouse brown adipose tissue, mouse dBAs, and mouse iPS-derived brown adipocytes (iBAs) were subjected to DNA microarray analysis, and global gene expression profiles of the cells were compared.
Project description:Comparasion of each cell mRNA expression pattern Human fibroblasts were directly converted into brown adipocytes (dBAs) by transducing some transcription factors. To characterize the dBAs more in detail, RNA extracted from the human WAs, human dBAs, and human iPS-derived brown adipocytes (iBAs) were subjected to DNA microarray analysis, and global gene expression profiles of the cells were compared.
Project description:Comparasion of each cell mRNA expression pattern Mouse fibroblasts were directly converted into brown adipocytes (dBAs) by transducing some transcription factors. To characterize the dBAs more in detail, RNA extracted from the mouse brown adipose tissue, mouse dBAs, and mouse iPS-derived brown adipocytes (iBAs) were subjected to DNA microarray analysis, and global gene expression profiles of the cells were compared. 3 samples
Project description:Comparasion of each cell mRNA expression pattern Human fibroblasts were directly converted into brown adipocytes (dBAs) by transducing some transcription factors. To characterize the dBAs more in detail, RNA extracted from the human WAs, human dBAs, and human iPS-derived brown adipocytes (iBAs) were subjected to DNA microarray analysis, and global gene expression profiles of the cells were compared. 6 samples
Project description:Cre recombinase activity was induced in differentiating brown adipocytes from CreERT2 Sykflox/flox mice in vitro, which resulted in a partial loss of Syk protein in mature brown adipocytes. Such cells were viable, morphologically normal and displayed largely normal gene expression as indicated by mRNA sequencing and qPCR analysis, suggesting that Syk is not required for survival and gene expression of terminally differentiated brown adipocytes. mRNA sequencing of Syk depleted brown adipocytes treated with 0.1 microM isoproterenol for 6 h showed that 2460 genes were not induced or suppressed upon stimulation. Gene set enrichment analysis revealed a great enrichment for genes essential for mitochondrial respiration and biogenesis, for genes associated with and required for adipogenesis, as well as for genes responsive to various stimuli in adipocytes among genes highly ranked by reduced fold changes in response to isoproterenol in the Syk deficient brown adipocytes.
Project description:Brown adipocytes represent a specialized type of mammalian adipocytes able to uncouple nutrients catabolism and ATP generation to dissipate energy as heat. They play an important role in mammals, allowing non-shivering thermogenesis to regulate body temperature in response to cold exposure. In humans, the brown fat tissue is dispersed in small depots found throughout the neck and trunk region. Increasing brown fat activity either with drug treatment or with cell therapy approaches are considered as potential approaches for the treatment of metabolic syndrome and obesity. The recent development of in vitro differentiation strategies relying on human pluripotent stem cells (hPSCs) offers in theory the possibility to produce unlimited amounts of BAT. A strategy efficiently applied to several tissues is to recapitulate step by step the development of the tissue of interest by exposing hPSCs to the signaling cues used during normal embryonic development. However, this strategy has proven difficult to implement for brown fat as the development of this tissue is poorly characterized. Here, we first used single cell RNA sequencing to characterize the development of interscapular brown fat in mouse. Our analysis identified a previously unrecognized population of brown adipocytes precursors characterized by expression of the transcription factor GATA6. We showed that this precursor population can be efficiently generated from hPSCs by modulating the signaling pathways identified our transcriptomic analysis in paraxial mesoderm precursors differentiated in vitro. These precursors can in turn be efficiently converted into functional brown adipocytes which can respond to adrenergic stimuli by increasing their metabolism resulting in heat production.
Project description:Brown adipocytes represent a specialized type of mammalian adipocytes able to uncouple nutrients catabolism and ATP generation to dissipate energy as heat. They play an important role in mammals, allowing non-shivering thermogenesis to regulate body temperature in response to cold exposure. In humans, the brown fat tissue is dispersed in small depots found throughout the neck and trunk region. Increasing brown fat activity either with drug treatment or with cell therapy approaches are considered as potential approaches for the treatment of metabolic syndrome and obesity. The recent development of in vitro differentiation strategies relying on human pluripotent stem cells (hPSCs) offers in theory the possibility to produce unlimited amounts of BAT. A strategy efficiently applied to several tissues is to recapitulate step by step the development of the tissue of interest by exposing hPSCs to the signaling cues used during normal embryonic development. However, this strategy has proven difficult to implement for brown fat as the development of this tissue is poorly characterized. Here, we first used single cell RNA sequencing to characterize the development of interscapular brown fat in mouse. Our analysis identified a previously unrecognized population of brown adipocytes precursors characterized by expression of the transcription factor GATA6. We showed that this precursor population can be efficiently generated from hPSCs by modulating the signaling pathways identified our transcriptomic analysis in paraxial mesoderm precursors differentiated in vitro. These precursors can in turn be efficiently converted into functional brown adipocytes which can respond to adrenergic stimuli by increasing their metabolism resulting in heat production.
Project description:Brown adipose tissue (BAT) dissipates energy and promotes cardio-metabolic health4. However, loss of BAT during obesity and aging is a principal hurdle for BAT-centered obesity therapies. So far not much is known about BAT apoptosis and signals released by apoptotic brown adipocytes. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. Interestingly, this apoptotic secretome enhances expression of the thermogenic program in healthy adipocytes to maintain tissue functionality. This effect is mediated by the purine inosine which stimulates energy expenditure (EE) in brown adipocytes. Phosphoproteomic analysis demonstrated activation of the cAMP/protein kinase A signaling pathway and of pro-thermogenic transcription factors by inosine.