Project description:This study was performed to investigate assess the impacts of CO and/or CM containing diets on Atlantic salmon hepatic gene expression in order to identify candidate molecular biomarkers of responses to camelina-containing diets. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial (Control diet: FO; Test diet: 100% FO replacement with CO, with solvent-extracted FM and inclusion of 10% CM (100COSEFM10CM). A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to FO controls at week 16.
Project description:New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from a transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar) containing low levels of fishmeal (35 %) and fish oil (10 %), reflecting current commercial formulations, to determine the impacts on intestinal transcriptome, tissue fatty acid profile and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found twelve years ago.
Project description:The present study aimed to identify the persistent molecular changes occurring in Atlantic Salmon salmon (Salmo salar) eggs after 24h exposure to high concentrations (5000 mg/L) of road salt at fertilization.
Project description:Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In addition, the microbial temporal proteome dynamics during 9 days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment.
Project description:The present study aimed to identify the persistent molecular changes occurring in Atlantic Salmon salmon (Salmo salar) eggs after 24h exposure to high concentrations (5000 mg/L) of road salt at fertilization. Atlantic Salmon (Salmo salar) eggs after fertilization were exposed to high concentrations (5000 mg/L) of road salt for 24 h and used for gene expression analysis.
Project description:The effect of different diets (i.e. fish oil based vs vegetable oil based) on liver transcription profiles over the life history stages (freshwater and marine phases) of cultured Atlantic salmon (Salmo salar) were explored. Two groups of fish were raised from first feeding on different lipid containing diets; a) the standard 100% fish oil based diet, the other enriched with a blend of vegetable oils (75%) + fish oil (25%). Liver samples were taken from fish at four time points: two freshwater phase (as parr 36 weeks post hatch (wph); as pre-smolts, 52 wph) and two marine phase ( as post-smolts 55 wph; and as adult fish , 86 wph). A total of 96 cDNA microarray hybridisations - TRAITS / SGP Atlantic salmon 17k feature cDNA microarray - were performed ( 2 diets x 4 time points x 6 biological replicates x 2 -dye swap) using a comon pooled reference contol design.
Project description:Deciphering the dietary immunomodulatory effects of a feed additive rich in verbascoside and triterpenic compounds like ursolic (MPLE, NATAC Biotech SL, Spain) on the systemic immune response and disease resistance of Atlantic salmon (Salmo salar L.) smolts.
Project description:This study was performed to investigate assess the impacts of CO and/or CM containing diets on Atlantic salmon hepatic gene expression in order to identify candidate molecular biomarkers of responses to camelina-containing diets. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial (Control diet: FO; Test diet: 100% FO replacement with CO, with solvent-extracted FM and inclusion of 10% CM (100COSEFM10CM). A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to FO controls at week 16. Atlantic salmon were fed for 16 weeks with the FO or 100COSEFM10CM diet (three tanks per diet). Liver samples were taken from 7 fish from each tank at week 16. A universal reference design was used for the microarray experiment. For the test samples, RNA was used from individual livers of fish from the 2 treatment groups: FO and 100COSEFM10CM. For each treatment group we used 9 biological replicates (3 fish from each of 3 tanks). All test samples were labeled with Cy5. The common reference was a pool of 18 RNA samples from livers of fish from all individuals invovled in microarray experiment. The common reference was labeled with Cy3. Each individual test sample was hybridized together with the common reference sample on an array, so the experiment consisted of 18 arrays
Project description:Atlantic salmon (Salmo salar L.) is an environmentally and economically important organism and its gene content is reasonably well characterized. From a transcriptional standpoint, it is important to characterize the normal changes in gene expression over the course of early development, from fertilization through to the parr stage.S. salar samples were taken at 17 time points from 2 to 89 days post fertilization. Total RNA was extracted and cRNA was synthesized and hybridized to a new 44K oligo salmonid microarray platform. Quantified results were subjected to preliminary data analysis and submitted to NCBI’s Gene Expression Omnibus. Throughout the entire period of development, several thousand genes were found to be differentially regulated. This work represents the trancriptional characterization of a very large geneset that will be extremely valuable in further examination of the transcriptional changes in Atlantic salmon during the first few months of development. The expression profiles can help to annotate salmon genes in addition to being used as references against any number of experimental variables that developing salmonids might be subjected to.