Project description:Using the HiSeqTM 2000 sequencing platform, the anther transcriptome of photo thermo sensitive genic male sterile lines (PTGMS) rice Y58S and P64S (Peiâai 64S) were analyzed at the fertility sensitive stage under cold stress.These datas would be most beneficial for further studies investigating the molecular mechanisms of rice responses to cold stress.
Project description:Leaf rolling and discoloration are two chilling injury symptoms that are widely adopted as indicators for evaluation of cold tolerance at the seedling stage in rice, respectively. However, their relationship has not been well investigated, in particular the mechanism on how low temperature causes leaf rolling at a genome-wide level. In this study, a cold-tolerant japonica cultivar Lijiangxintuanheigu and a cold-sensitive indica cultivar Sanhuangzhan-2 were subjected to different low temperature treatments and physiological and genome-wide gene expression analysis were conducted. Our results showed that leaf rolling happened at temperatures lower than 11℃, but discoloration appeared at moderately low temperatures, such as 13℃. Chlorophyll contents of the two cultivars significantly decreased under 13℃, but didn’t change under 11℃. Contrastly, their relative water contents and the relative electrolyte leakages decreased significantly. Genome-wide gene expression profiling of LTH revealed that the calcium signaling related genes and the genes related to ABA degradation significantly changed under 11℃. Moreover, numerous genes in DREB, MYB, bZIP, NAC, Zin finger, bHLH, WRKY gene families were differently expressed. Furthermore, many aquaporin genes, the key genes in trehalose and starch synthesis were down-regulated under 11℃. These results suggest that the two chilling injury symptoms are controlled by different mechanisms. Cold-induced leaf rolling is associated with calcium and ABA signaling pathways, and subjected to regulation of multiple transcription regulators. The suppression of aquaporin genes and reduced accumulation of soluble sugars under cold stress result in reduction of water potential in cells and consequently, leaf rolling.
Project description:Chilling stress is a major abiotic stress that affects rice growth and development. Rice seedlings are quite sensitive to chilling stress and this harms global rice production. Comprehensive studies of the molecular mechanisms for response to low temperature are of fundamental importance to chilling tolerance improvement. The number of identified cold regulated genes (CORs) in rice is still very small. Circadian clock is an endogenous timer that enables plants to cope with forever changing surroundings including light–dark cycles imposed by the rotation of the planet. Previous studies have demonstrated that the circadian clock regulates stress tolerances in plants show circadian clock regulation of plant stress tolerances. However, little is known about coordination of the circadian clock in rice chilling tolerance. In this study, we investigated rice responses to chilling stress under conditions with natural light-dark cycles. We demonstrated that chilling stress occurring at nighttime significantly decreased chlorophyll content and photosynthesis efficiency in comparison with that occurring at daytime. Transcriptome analysis characterized novel CORs in indica rice, and suggested that circadian clock obviously interferes with cold effects on key genes in chlorophyll (Chl) biosynthesis pathway and photosynthesis-antenna proteins. Expression profiling revealed that chilling stress during different Zeitberger times (ZTs) at nighttime repressed the expression of those genes involved Chl biosynthesis and photosynthesis, whereas stress during ZTs at daytime increases their expression dramatically. Moreover, marker genes OsDREBs for chilling tolerance were regulated differentially by the chilling stress occurring at different ZTs. The phase and amplitude of oscillation curves of core clock component genes such as OsLHY and OsPRR1 are regulated by chilling stress, suggesting the role of chilling stress as an input signal to the rice circadian clock. Our work revealed impacts of circadian clock on chilling responses in rice, and proved that the effects on the fitness costs are varying with the time in a day when the chilling stress occurs.
Project description:Rice seedlings at 3-leaf stage were used for expression analysis in control and cold stressed (incloudling cold treatment for 3, 24hrs and recovery from cold stress for 24hrs) samples. Samples of shoots and roots from biological replicates of both genotypes were generated and the expression profiles were determined using Phalanx Rice OneArrayM-oM-<M- v1. Control and treated biological replicates of cold-tolerant cultivar TNG67 (japonica) and cold-sensitive cultivar TCN1 (indica) were analyzed
Project description:In this study, we analyzed the early response of two rice cultivars to infection by RSV (Rice stripe virus) and its carrier at the transcriptome level using next-generation deep-sequencing techniques. We investigated the alteration in gene expression between a disease-resistant cultivar and a susceptible cultivar before and after inoculation with RSV by co-culturing with Laodelphax striatellus for 48 h. Our study provides insight at the molecular level into the mechanism of development of rice stripe disease, which contributes to our understanding of the rice-RSV interaction.
Project description:Gibberellins control a wide range of aspects of plant growth and development. Although a series of mutant of the signaling pathway has been identified, the global regulatory network underlying gibberellin signal transduction has not been revealed. To address this issue, we performed microarray analysis with rice gibberellin signaling mutants, gid1, gid2, slr, and the parental cultivar Taichung 65.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing.
Project description:In this study, we used RNA-Seq to understand the mechanisms of Cd toxicity, cellular detoxification and protection pathways in response to Cd in rice roots. To gain additional insight into the rice transcriptomic response to environmental Cd stress, 15-day-old rice seedlings were treated with 10 or 100 μM solutions of Cd2+, or without Cd (control), for 24 h, at which point root samples were harvested and labeled as Cd+, Cd++, and control, respectively. These samples were used for 101 bp paired-end (PE) deep sequencing on an Illumina HiSeq 2500 platform.
Project description:In order to identify new miRNAs, NAT-siRNAs and possibly abiotic-stress regulated small RNAs in rice, three small RNA libraries were constructed from control rice seedlings and seedlings exposed to drought or salt stress, and then subjected to pyrosequencing. Totally three sets of small RNAs, which were obtained under normal condition as well as salt and drought stress conditions