Project description:Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling. The subjects fasted for 12 hours prior to beginning each experiment and evaluation session. Each volunteer swallowed capsules with PME containing citrus pectin (6 g) (Nittary Pharmaceuticals, VitaLine, Inc., USA). After 120 min blood samples were obtained. Total RNA was isolated from WBCs with TriReagent (MRC, USA) according to the manufacturer’s protocol.
Project description:Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling. The subjects fasted for 12 hours prior to beginning each experiment and evaluation session. Each volunteer swallowed capsules with PME containing citrus pectin (6 g) (Nittary Pharmaceuticals, VitaLine, Inc., USA). After 120 min blood samples were obtained. Total RNA was isolated from WBCs with TriReagent (MRC, USA) according to the manufacturer’s protocol.
Project description:Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling. The subjects fasted for 12 hours prior to beginning each experiment and evaluation session. Each volunteer swallowed capsules with PME containing citrus pectin (6 g) (Nittary Pharmaceuticals, VitaLine, Inc., USA). After 120 min blood samples were obtained. Total RNA was isolated from WBCs with TriReagent (MRC, USA) according to the manufacturer’s protocol.
Project description:Genome-wide gene expression profiling of whole blood leukocytes during experimental human endotoxemia has been used extensively to model acute systemic host responses. Through technological advances in genomics it has become clear that transcription is not limited to protein-coding regions of the genome. Here, we describe a comprehensive analysis of RNA expression of blood leukocytes in healthy volunteers during experimental human endotoxemia.
Project description:To gain insight into miRNAs involved in the regulation of the human innate immune response, we screened for differentially expressed miRNAs in circulating leukocytes in an in vivo model of acute inflammation triggered by E. coli lipopolysaccharide (LPS) infusion.<br>Leukocyte RNA was isolated from venous blood samples obtained from healthy male volunteers before and 4 hours after LPS-infusion. After fluorescence labeling, RNA samples were hybridized to microarrays containing capture probes for measuring the abundance<br>of more than 600 human miRNAs (Exiqon).
Project description:Objective was to examine acute gene expression responses to physiologic oral glucose ingestion in human circulating leukocytes. Microarray study of human circulating leukocytes sampled before, 1 hour after and 2 hours after glucose ingestion was performed. The present study demonstrated 36 genes which showed acute gene expression change in human leukocytes within 1 hour after glucose ingestion and suggest that leukocytes participate in the inflammatory process induced by acute hyperglycemia. Microarray study of human circulating leukocytes sampled before, 1 hour after and 2 hours after glucose ingestion
Project description:Objective was to examine acute gene expression responses to physiologic oral glucose ingestion in human circulating leukocytes. Microarray study of human circulating leukocytes sampled before, 1 hour after and 2 hours after glucose ingestion was performed. The present study demonstrated 36 genes which showed acute gene expression change in human leukocytes within 1 hour after glucose ingestion and suggest that leukocytes participate in the inflammatory process induced by acute hyperglycemia.