Project description:The cytoplasmic functions of Wiskott-Aldrich Syndrome family (WASP) proteins are well known and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response and signal transduction. Mis-regulation of these proteins is associated with immune deficiency and metastasis. Cytoplasmic WASP proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex. However, recent evidence has revealed that this classically cytoplasmic protein family also functions in the nucleus. Previously, we identified Drosophila washout (wash) as a new member of the WASP family with essential cytoplasmic roles in early development. Here we show that Wash is also present in the nucleus and plays a key role in nuclear organization via its interaction with Lamin Dm0 at the nuclear envelope. Wash and Lamin Dm0 occupy similar genomic regions that overlap with transcriptionally silent chromatin including constitutive heterochromatin. Strikingly, wash mutant and knockdown nuclei exhibit the same abnormal wrinkled morphology observed in diverse laminopathies, including the Hutchinson-Gilford progeria syndrome, and consistent with disruption of the nuclear organization of several sub-nuclear structures including cajal bodies and the chromocenter in salivary glands. We also found that Wash and Lamin knockdown disrupt chromatin accessibility of repressive compartments in agreement with an observed global redistribution of repressive histone modifications. Functional genetic approaches show wash mutants exhibit similar phenotypes to lamin Dm0 mutants, suggesting they participate in similar regulatory networks. Our results reveal a novel role for Wash in modulating nuclear organization via its interaction with the nuclear envelope protein Lamin Dm0. These findings highlight the functional complexity of WASP family proteins and provide new venues to understand their molecular roles in cell biology and disease. We evaluated the effect of Wash knockdown in S2R+ cells on chromatin accessibility using an M.SssI-based approach.
Project description:The cytoplasmic functions of Wiskott-Aldrich Syndrome family (WASP) proteins are well known and include roles in cytoskeleton reorganization and membrane-cytoskeletal interactions important for membrane/vesicle trafficking, morphogenesis, immune response and signal transduction. Mis-regulation of these proteins is associated with immune deficiency and metastasis. Cytoplasmic WASP proteins act as effectors of Rho family GTPases and polymerize branched actin through the Arp2/3 complex. However, recent evidence has revealed that this classically cytoplasmic protein family also functions in the nucleus. Previously, we identified Drosophila washout (wash) as a new member of the WASP family with essential cytoplasmic roles in early development. Here we show that Wash is also present in the nucleus and plays a key role in nuclear organization via its interaction with Lamin Dm0 at the nuclear envelope. Wash and Lamin Dm0 occupy similar genomic regions that overlap with transcriptionally silent chromatin including constitutive heterochromatin. Strikingly, wash mutant and knockdown nuclei exhibit the same abnormal wrinkled morphology observed in diverse laminopathies, including the Hutchinson-Gilford progeria syndrome, and consistent with disruption of the nuclear organization of several sub-nuclear structures including cajal bodies and the chromocenter in salivary glands. We also found that Wash and Lamin knockdown disrupt chromatin accessibility of repressive compartments in agreement with an observed global redistribution of repressive histone modifications. Functional genetic approaches show wash mutants exhibit similar phenotypes to lamin Dm0 mutants, suggesting they participate in similar regulatory networks. Our results reveal a novel role for Wash in modulating nuclear organization via its interaction with the nuclear envelope protein Lamin Dm0. These findings highlight the functional complexity of WASP family proteins and provide new venues to understand their molecular roles in cell biology and disease. DamID chromatin profiling demostrate that Wash binds similar regions to those bound by Lamin Dm0, in particular transcriptional silent chromatin
Project description:Drosophila Haspin kinase phosphorylates Histone H3 at threonine 3 at centromeric heterochromatin and either lamin- or polycomb-enriched euchromatic regions, being required for nuclear organization of interphase cells and polycomb-dependent gene silencing.
Project description:Nucleus is a highly structured organelle and contains many functional compartments. While the structural basis for this complex spatial organization of compartments is unknown, a major component of this organization is likely to be the non-chromatin scaffolding called nuclear matrix (NuMat). Experimental evidence over the past decades indicates that most of the nuclear functions are at least transiently associated with the NuMat although the components of NuMat itself are poorly known. Here, we report NuMat proteome analysis from Drosophila melanogaster embryos and discuss its links with nuclear architecture and functions. In the NuMat proteome, we find structural proteins, chaperones related, DNA/RNA binding, chromatin remodeling and transcription factors. This complexity of NuMat proteome is an indicator of its structural and functional significance. Comparison of the 2D profile of NuMat proteome from different developmental stages of Drosophila embryos shows that less than half of the NuMat proteome is constant and rest of the proteins are stage specific dynamic components. This NuMat dynamics suggests a possible functional link between NuMat and the embryonic development. Finally, we also show that a subset of NuMat proteins remain associated with the mitotic chromosomes implicating their role in mitosis and possibly the epigenetic cellular memory. NuMat proteome analysis provides tools and opens up ways to understand nuclear organization and function.
Project description:As we age, structural changes contribute to progressive decline in organ function, which in the heart acts through poorly characterized mechanisms. Utilizing the rapidly aging fruit fly model with its significant homology to the human cardiac proteome, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age. Unlike other tissues and laminopathies, we observe decreasing nuclear size, while nuclear stiffness increases. Premature genetic reduction of Lamin C phenocopies aging’s effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find an adult-specific role for cardiac transcription factors and show that maintenance of Lamin C sustains their expression and prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.
Project description:As we age, structural changes contribute to progressive decline in organ function, which in the heart acts through poorly characterized mechanisms. Utilizing the rapidly aging fruit fly model with its significant homology to the human cardiac proteome, we found that cardiomyocytes exhibit progressive loss of Lamin C (mammalian Lamin A/C homologue) with age. Unlike other tissues and laminopathies, we observe decreasing nuclear size, while nuclear stiffness increases. Premature genetic reduction of Lamin C phenocopies aging’s effects on the nucleus, and subsequently decreases heart contractility and sarcomere organization. Surprisingly, Lamin C reduction downregulates myogenic transcription factors and cytoskeletal regulators, possibly via reduced chromatin accessibility. Subsequently, we find an adult-specific role for cardiac transcription factors and show that maintenance of Lamin C sustains their expression and prevents age-dependent cardiac decline. Our findings are conserved in aged non-human primates and mice, demonstrating age-dependent nuclear remodeling is a major mechanism contributing to cardiac dysfunction.