Project description:Glucose-dependent insulinotropic polypeptide (GIP) has been proposed to exert insulin-independent effects on lipid and bone metabolism. We investigated the effect of a 6-day s.c. GIP infusion on circulating lipids, white adipose tissue (WAT), brown adipose tissue (BAT), hepatic fat content, and inflammatory markers in patients with type 1 diabetes. In a randomized, placebo-controlled, double-blind, crossover study, 20 men with type 1 diabetes underwent a 6-day continuous s.c. infusion with GIP (6 pmol/kg/min) and placebo (saline), with an interposed seven-day washout period. Each intervention period involved three study days: Day 0 (baseline measurements, a baseline abdominal adipose tissue biopsy and blood sampling), Day 1 (fasting blood sample after 24 hours infusion), and Day 6 (fasting blood sample, an abdominal adipose tissue biopsy).
Project description:Experiments were designed to compare white adipose tissue (WAT) or brown adipose tissue (BAT) -in male and female mice- between Bscl2 knock-out mice and their wild-type control mice. RNA was pooled to obtain 2x 8µg per tissue source and subjected to dye-swap hybridization.
Project description:We run microarrays from three per group Sv129 female mice, ten weeks old, which were maintained at 28M-BM-0C (warm conditions) or 6M-BM-0 C (cold stimulated) for ten days, while standard animal house temperature is 22 M-BM-0C. After ten days, three types of tissue were collected: Brown Adipose Tissue (BAT), Mesenteric (visceral) White Adipose Tissue (MES) and Posterior Subcutaneous White Adipose Tissue (WAT) Different adipose tissue depots were taken for RNA extraction and hybridization on Affymetrix microarrays. We sought to determine the differences between white and brown adipose tissues at different temperatures
Project description:We conducted expression profiling of white adipose tissue isolated from WT and miR-22 KO animals. The main work is analysis of the miR-22 function in striated muscle. White adipose tissue (WAT) was analyzed to look at effects in WAT, as that might be induced by metabolic changes in skeletal muscle.
Project description:We run microarrays from three per group Sv129 female mice, ten weeks old, which were maintained at 28°C (warm conditions) or 6° C (cold stimulated) for ten days, while standard animal house temperature is 22 °C. After ten days, three types of tissue were collected: Brown Adipose Tissue (BAT), Mesenteric (visceral) White Adipose Tissue (MES) and Posterior Subcutaneous White Adipose Tissue (WAT)
Project description:Transcriptome analysis of epididymal white adipose tissue (WAT) depots in Ercc1 animals: To further elucidate the role of ERCC1 in WAT we scanned the transcriptome of 15 day old wt and Ercc1 epididymal WAT.
Project description:White adipose tissue (WAT) harbors functionally diverse subpopulations of adipose progenitor cells that differentially impact tissue plasticity in a sex- and depot-dependent manner. To date, the molecular basis of this cellular heterogeneity has not been fully defined. Here, we describe a multilayered omics approach to dissect adipose progenitor cell heterogeneity from in three dimensions: progenitor subpopulation, sex, and anatomical localization. We applied state-of-the-art mass spectrometry methods to quantify 4870 proteins in eight different stromal cell populations from perigonadal and inguinal WAT of male and female mice and acquired transcript expression levels of 15477 genes using RNA-seq. Notably, our data highlight the molecular signatures defining sex differences in PDGFR+ preadipocyte differentiation and identify regulatory pathways that functionally distinguish adipose tissue PDGFRb+ subpopulations. The data are freely accessible as a resource at "Pread Profiler. Together, the multilayered omics analysis provides unprecedented insights into adipose stromal cell heterogeneity.
Project description:Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype we performed DNA microarray analysis on white adipose tissue (WAT) from PeriA transgenic (Tg) and control wildtype (WT) mice. We generated transgenic mice that overexpressed human PeriA using the adipocyte specific aP2 promoter/enhancer (Miyoshi, et al. J Lipid Res 2010). All PeriA Tg mice used for the study were female, and heterozygous for the transgene. Littermates that lacked the transgene were used as controls (WT). All mice were housed at room temperature, maintained on a 12 h light/dark cycle, given free access to water, and fed a high-fat diet (HFD) until the age of 30 weeks. On the day prior to tissue harvest at 30 weeks, WAT from perigonadal were rapidly dissected out, extracted total RNA, and hybridized on Affymetrix microarrays.
Project description:Analysis of inguinal white adipose tissue (WAT) isolated from wildtype (WT) and Notch1 overexpression mice (Ad/NICD). Results provide insight into molecular mechanisms underlying lipodystrophy of Ad/NICD mice
Project description:CD44 expression has been shown to be enhanced in the liver and white adipose tissue (WAT) during obesity, suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we compared the gene expression profiles in liver and in WAT between WT and CD44 knockout (CD44KO) mice fed a high-fat diet (HFD) for 21 weeks. This analysis demonstrated that several genes associated with triglyceride synthesis and accumulation, including Mogat2, Cidea, Cidea, Apoa4, and Elovl7, were decreased in the livers of CD44KO mice compared to WT mice. Many genes encoding pro-inflammatory chemokines and chemokine receptors also were decreased in the livers of CD44KO mice. Analysis with WAT showed that genes associated with triglyceride accumulation, including Fasn, Elovl6 and Mogat2, were increased in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. Moreover, many genes associated with inflammation, including cytokines (Cxcl14, Cxcl12, Il33, and Il2), cytokine receptors (Ccr1, Il6ra, Il10rb), trypases (Tpsb2, Tpsab1, Tpsg1), and cellular matrix proteins (Integrin ?4 (Itga4), ItgaM, Itgb2), were decreased in WAT of CD44(HFD) compared to WT(HFD) mice. This study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome. Liver and white adipose tissue (WAT) total RNAs were purified from 5 WT and 5 CD44 knockout mice fed with a high-fat diet for 21 weeks. Then, samples were applied on Agilent mouse genome chips.