Project description:To identify a novel miRNA that is aberrantly expressed in GICs, we analyzed differences in miRNA expression between the mouse GICs, NSCL61 and OPCL61, showing characteristic features of cancer stem cell, and their parental cells by miRNA microarrays. neural stem cells, glioma-initiating cells (GICs) from neural stem cells, oligodendrocyte precursor cells, glioma-initiating cells (GICs) from oligodendrocyte precursor cells.
Project description:To identify factors involved in tumorigenicity of glioma-initiating cells (GICs), we compared gene expression in GIC-like cells with and without sox11 expression. We established sox11-expressing mouse glioma-initiating cell (GIC)-like cell line (NSCL61s), NSCL61s-sox11, which lost tumorigenicity when transplanted in vivo. We think that genes, which are differently expressed between NSCL61s and NSCL61s-sox11, would be new targets for glioma therapy.
Project description:To find factors and pathways that Eva1 regulates in NSCL61 We identified Eva1 as a new factor expressed in glioma-initiating cells (GICs). Eva1 regulates the proliferation of GICs.
Project description:To identify a novel miRNA that is aberrantly expressed in GICs, we analyzed differences in miRNA expression between the human GICs and glioma cell lines and neural stem cells by miRNA microarrays. We examined the miRNA expression profiles of five human GICs that were obtained from human glioma samples and two human glioma cell lines, U87 and U251, and NSC (neural stem cells) as a control.
Project description:Glioma initiating cells (GICs) are considered responsible for the therapeutic resistance and recurrence of malignant glioma. To clarify the molecular mechanism of GIC maintenance/differentiation, we established GIC clones from GBM patient tumors having the potential to differentiate into malignant gliomas in mouse intracranial xenograft, and established an in vitro glioma induction system by using serum stimulation. Upon the serum stimulation, the GIC spheres showed increased cellular proliferation, motility, filopodia/lameripodia formation and adhesion to the culture dishes. Simultaneously, the NSC marker proteins such as CD133 and Sox2 were down-regulated, and the astrocyte/glioma marker GFAP and the malignancy marker CD44 dramatically up-regulated. To identify genes/proteins whose expression changes dynamically during the differentiation of GICs into glioma cells, these GICs were subjected to DNA microarray/iTRAQ based integrated proteomics.