Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse. Using microdissected soma and dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in neurons
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse. Using microdissected soma and dendrites from primary cultures of hippocampal neurons of two mouse strains (C57BL/6 and Balb/c) and one rat strain (Sprague-Dawley), we investigate via microarrays, subcellular localization of mRNAs in neurons
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse.
Project description:To assess neuronal expression divergence between mice and rats, we used the Affymetrix array platform to assay the transcriptomes of micro-dissected individual soma and pool of dendrites of hippocampal neurons in dispersed primary cell cultures from rat and mouse.
Project description:Recent findings have revealed the complexity of the transcriptional landscape in mammalian cells. One recently described class of novel transcripts are the Cytoplasmic Intron-sequence Retaining Transcripts (CIRTs), hypothesized to confer post-transcriptional regulatory function. For instance, the neuronal CIRT KCNMA1i16 contributes to the firing properties of hippocampal neurons. We hypothesized that CIRTs may be present in a broad set of transcripts and comprise novel signals for post-transcriptional regulation. We carried out a transcriptome-wide survey of CIRTs by sequencing micro-dissected subcellular RNA fractions. Two batches of 150-300 individually dissected dendrites from primary cultures of hippocampal neurons in rat and three batches from mouse hippocampal neurons were sequenced. After statistical processing to minimize artifacts, we found a broad prevalence of CIRTs in the neurons in both species (44-60% of the expressed transcripts). The analysis for CIRTs was also carried out by sequencing single cells from mouse brown adipose tissue and mouse cardiomyocytes. There was widespread prevalence of CIRTs in all of the cell types. Single cell samples were aRNA amplified and sequenced using Illumina GA Analyzer II and Illumina Hiseq 2000
Project description:To compare the RNAs present in dendrites and somas of individual neurons, we manually separated the dendrites and soma of primary mouse hippocampal neurons using a micropipette and performed RNA-sequencing on each subcellular fraction such that we obtained the subcellular transcriptomes of the same cell.