Project description:Identification of differentially expressed genes in seeds and silique walls at the seed-filling stage in Brassica napus through transcriptional profiling
Project description:Identification of differentially expressed genes in seeds and silique walls at the seed-filling stage in Brassica napus through transcriptional profiling Two tissues, three biological replicates, one biological duplicate with two technical replicates
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress.
Project description:High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, we employed a microarray analysis with silique walls and seeds from the developing siliques (20 days after flowering) of Brassica napus that had undergone heat stress. Two-condition experiment, control vs heat stress, 2 time points
Project description:mRNA expression profiling of the embryo, endosperm (micropylar, peripheral, chalazal), and seed coat (outer, inner, chalazal, chalazal proliferating tissue) of the developing Brassica napus seed. Tissues were isolated using laser microdissection (LMD) from Brassica napus seeds at the globular, heart, and mature green stages of seed development.
Project description:MicroRNAs (miRNAs) are a class of non-coding small RNAs (sRNAs) that play crucial regulatory roles in various developmental processes. Silique length indirectly influences seed yield in rapeseed (Brassica napus); however, the molecular roles of miRNAs in silique length are largely unknown. Here, backcross progenies of rapeseed with long siliques (LS) and short siliques (SS) were used to elucidate this role. Four small RNA libraries from early developing siliques were sequenced, and a total of 814 non-redundant miRNA precursors were identified, representing 65 known miRNAs, and 394 novel miRNAs. Expression analyses revealed 12 known miRNAs and 5 novel miRNAs that were differentially expressed in LS and SS lines. Furthermore, though two degradome sequencing, we annotated 522 cleavage events. An analysis of correlated expression between differentially expressed miRNAs and their targets demonstrated that some transcription factors might repress cell proliferation or auxin signal transduction to control silique length, and that a Pi/Cu deficiency might also restrict silique development. More significantly, the overexpression of miR160 in rapeseed may repress auxin response factors and result in increased silique length, illustrating that silique length could be regulated via an auxin-response pathway. These results will serve as a foundation for future research in B. napus.
Project description:Understanding the regulation of lipid metabolism is vital for genetic engineering of Brassica napus (B. napus) to increase oil yield or modify oil composition. We report the application of Illumina Hiseq 2000 for transcriptome profiling of seeds of B. napus at different developmental stages, which may uncover the dynamic changes in lipid metabolism and reveal key genes involved in lipid biosynthesis and degradation. Total RNA from developing seeds at 2, 4, 6, and 8 weeks after pollination (WAP) were isolated and sequenced separately. The gene expression levels of all samples were quantified and normalized by the DESeq normalization. We found that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. Two genes, encoding for acetyl-CoA carboxylase and acyl-ACP desaturase, might be critical for fatty acid biosynthesis in oil rape seeds. This study provides insight into the mechanism underlying lipid metabolism and reveals candidate genes that are worthy of further investigation for their values in genetic engineering of B. napus. Whole Transcriptome profiling of developing Brassica napus seeds at 2, 4, 6, 8 WAP by RNA sequencing using Illumina HiSeq 2000.
Project description:To broadly identify genes regulated by Transparent Testa16 in Brassica napus In order to broadly identify genes regulated by BnTT16s, microarray technology was employed to compare gene expression levels in developing seeds (2-DAP) of Bntt16 RNAi and wild-type plants.
Project description:Understanding the regulation of lipid metabolism is vital for genetic engineering of Brassica napus (B. napus) to increase oil yield or modify oil composition. We report the application of Illumina Hiseq 2000 for transcriptome profiling of seeds of B. napus at different developmental stages, which may uncover the dynamic changes in lipid metabolism and reveal key genes involved in lipid biosynthesis and degradation. Total RNA from developing seeds at 2, 4, 6, and 8 weeks after pollination (WAP) were isolated and sequenced separately. The gene expression levels of all samples were quantified and normalized by the DESeq normalization. We found that the biosynthesis of fatty acids is a dominant cellular process from 2 to 6 WAP, while the degradation mainly happens after 6 WAP. Two genes, encoding for acetyl-CoA carboxylase and acyl-ACP desaturase, might be critical for fatty acid biosynthesis in oil rape seeds. This study provides insight into the mechanism underlying lipid metabolism and reveals candidate genes that are worthy of further investigation for their values in genetic engineering of B. napus.
Project description:Differentially expressed genes in developing pods of CpFatB4- and CpFatB5- expressing transgenic Brassica napus in seed specific manner were investigated using RNA-seq method at 8, 25, and 45 days after fertilization