Project description:The study investigated the physiological response of a butyrate-oxidizing co-culture (comprised of Syntrophomonas wolfei and Methanospirillum hungatei) to the addition of a fermentative microorganism, Trichococcus flocculiformis.
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1. 7 samples of Desulfovibrio alaskensis strain G20 grown in syntrophic coculture on lactate with either Methanococcus maripaludis (4 replicates) or Methanospirillum hungatei (3 replicates), and 5 samples of sulfate-limited monoculture growth of strain G20 on lactate.
Project description:Methylmercury (MeHg), a neurotoxic substance that accumulates in aquatic food chains and poses a risk to human health, is synthesized by anaerobic microorganisms in the environment. To date, mercury (Hg) methylation has been attributed to sulfate- and iron-reducing bacteria (SRB and IRB, respectively). Here we report that a methanogen, Methanospirillum hungatei JF-1, methylated Hg in a sulfide-free medium at comparable rates, but with higher yields, than those observed for some SRB and IRB. Phylogenetic analyses showed that the concatenated orthologs of the Hg methylation proteins HgcA and HgcB from M. hungatei are closely related to those from known SRB and IRB methylators and that they cluster together with proteins from eight other methanogens, suggesting that these methanogens may also methylate Hg. Because all nine methanogens with HgcA and HgcB orthologs belong to the class Methanomicrobia, constituting the late-evolving methanogenic lineage, methanogenic Hg methylation could not be considered an ancient metabolic trait. Our results identify methanogens as a new guild of Hg-methylating microbes with a potentially important role in mineral-poor (sulfate- and iron-limited) anoxic freshwater environments.
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1.
Project description:Microbially produced electrically conductive protein filaments are of interest because they can function as conduits for long-range biological electron transfer. They also show promise as sustainably produced electronic materials. Until now, microbially produced conductive protein filaments have been reported only for bacteria. We report here that the archaellum of Methanospirillum hungatei is electrically conductive. This is the first demonstration that electrically conductive protein filaments have evolved in Archaea Furthermore, the structure of the M. hungatei archaellum was previously determined (N. Poweleit, P. Ge, H. N. Nguyen, R. R. O. Loo, et al., Nat Microbiol 2:16222, 2016, https://doi.org/10.1038/nmicrobiol.2016.222). Thus, the archaellum of M. hungatei is the first microbially produced electrically conductive protein filament for which a structure is known. We analyzed the previously published structure and identified a core of tightly packed phenylalanines that is one likely route for electron conductance. The availability of the M. hungatei archaellum structure is expected to substantially advance mechanistic evaluation of long-range electron transport in microbially produced electrically conductive filaments and to aid in the design of "green" electronic materials that can be microbially produced with renewable feedstocks.IMPORTANCE Microbially produced electrically conductive protein filaments are a revolutionary, sustainably produced, electronic material with broad potential applications. The design of new protein nanowires based on the known M. hungatei archaellum structure could be a major advance over the current empirical design of synthetic protein nanowires from electrically conductive bacterial pili. An understanding of the diversity of outer-surface protein structures capable of electron transfer is important for developing models for microbial electrical communication with other cells and minerals in natural anaerobic environments. Extracellular electron exchange is also essential in engineered environments such as bioelectrochemical devices and anaerobic digesters converting wastes to methane. The finding that the archaellum of M. hungatei is electrically conductive suggests that some archaea might be able to make long-range electrical connections with their external environment.