Project description:The study investigated the physiological response of a butyrate-oxidizing co-culture (comprised of Syntrophomonas wolfei and Methanospirillum hungatei) to the addition of a fermentative microorganism, Trichococcus flocculiformis.
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1. 7 samples of Desulfovibrio alaskensis strain G20 grown in syntrophic coculture on lactate with either Methanococcus maripaludis (4 replicates) or Methanospirillum hungatei (3 replicates), and 5 samples of sulfate-limited monoculture growth of strain G20 on lactate.
Project description:Expression data for Desulfovibrio alaskensis strain G20 grown on lactate in sulfate-limited monoculture and syntrophic coculture with Methanococcus maripaludis or Methanospirillum hungatei in chemostats at a low growth rate of 0.027h-1.
Project description:Methanospirillum hungatei strain JF1 (DSM 864) is a methane-producing archaeon and is the type species of the genus Methanospirillum, which belongs to the family Methanospirillaceae within the order Methanomicrobiales. Its genome was selected for sequencing due to its ability to utilize hydrogen and carbon dioxide and/or formate as a sole source of energy. Ecologically, M. hungatei functions as the hydrogen- and/or formate-using partner with many species of syntrophic bacteria. Its morphology is distinct from other methanogens with the ability to form long chains of cells (up to 100 μm in length), which are enclosed within a sheath-like structure, and terminal cells with polar flagella. The genome of M. hungatei strain JF1 is the first completely sequenced genome of the family Methanospirillaceae, and it has a circular genome of 3,544,738 bp containing 3,239 protein coding and 68 RNA genes. The large genome of M. hungatei JF1 suggests the presence of unrecognized biochemical/physiological properties that likely extend to the other Methanospirillaceae and include the ability to form the unusual sheath-like structure and to successfully interact with syntrophic bacteria.
Project description:Pyruvate fermentation pathway and energetics of Desulfovibrio alaskensis strain G20 under syntrophic coculture and fermentative monoculture conditions Expression data for Desulfovibrio alaskensis strain G20 grown in chemostats on pyruvate under respiratory conditions (sulfate-limited and pyruvate-limited monoculture, dilution rate 0.047 and 0.027 h-1), fermentative conditions (monoculture, dilution rate 0.036 h-1), and syntrophic conditions (coculture with Methanococcus maripaludis or Methanospirillum hungatei, dilution rate of 0.047 and 0.027 h-1)
Project description:We report the complete genome sequence of Methanospirillum hungatei strain GP1 (DSM 1101). Strain GP1 oxidizes H2, formate, and secondary alcohols as the substrates for methanogenesis. Members of the genus are model organisms used to study syntrophic growth with bacterial partners, but secondary alcohol metabolism remains poorly studied.