Project description:Neutrophil activation plays a critical role in the inflammatory response to gram-negative bacterial infections. Lipopolysaccharide (LPS) from gram-negative bacterial has been shown to be a major mediator of neutrophil activation to produce pro-inflammatory cytokines, chemokines and ROS which are important to tissue damage in LPS induced septic shock. We used microarrays to detail the global gene expression of neutrophils from miR-125a+/+ and miR-125a-/- mice after LPS stimulation.
Project description:We cultured bone marrow derived dendritic cells from WT and CD11c KO mice. Then, a group of bone marrow dendritic cells were stimulated with LPS overnight. We obtained bone marrow derived dendritic cells with or without LPS stimulation and analyzed proteomics profiles.
Project description:We have performed analyses of murine primary bone marrow derived neutrophils challenged with either ultra-low dose or high dose of LPS. Neutrophils can be differentially programmed to distinct states by varying dosages of LPS. Purified bone marrow neutrophils were treated with PBS, 100 pg/ml LPS or 100 ng/ml LPS overnight, and harvested for scRNAseq analysis to examine their profiles of gene expression.
Project description:We report the genome-wide RNA sequencing analysis in Il10-/- bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) where IL-10 effect in macrophage inflammatory response was examined in IL-10-deficient BMDMs upon LPS stimulation with addition of exogenous IL-10.
Project description:We have generated immune-enhancing neutrophils by culturing murine primary bone marrow derived neutrophils with either super-low dose of LPS. Immune-enhancing neutrophils preferentially express co-stimulatory molecules such as CD74, CD44 and CD86, and exhibit reduced expression of CD11b. Purified bone marrow neutrophils were treated with PBS or 100 pg/ml LPS overnight in the presence of GM-CSF, and harvested for scRNAseq analysis to examine their profiles of gene expression.
Project description:IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, âknock-inâ mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of bone marrow macrophages obtained from WT and IRAK-4 KD mice with a number of experimental techniques demonstrated that the IRAK-4 KD cells greatly lack responsiveness to stimulation with the Toll-like receptor 4 (TLR4) agonist LPS. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent LPS response genes and revealed that the induction of LPS-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in TLR4-mediated induction of inflammatory responses. Experiment Overall Design: The response of mouse bone marrow macrophages from WT and IRAK4 kinase dead animals to stimulation with LPS at two time points was determined. There were 12 samples in total, 6 from WT and 6 from IRAK4 kinase dead cells; for each strain there were 3 conditions: growth for 4 hours without stimulation (the strain-specific control), growth for 1 hour with stimulation, and growth for 4 hours with stimulation; for each condition there were two biological replicates.
Project description:By performing RNA-seq analysis on bone marrow neutrophils from the Alkbh5-deficient mice and Wild-type littermates undergoing CLP-induced sepsis, we want to investigate the effect of ALKBH5 on transcriptional landscape of mouse bone marrow neutrophils during bacterial infection. Then, we performed gene expression profiling and Gene Ontology enrichment analysis of the significantly differentially expressed genes using data obtained from RNA-seq.
Project description:Expression of the activating transcription factor 3 (ATF3) gene is induced by Toll-like receptor (TLR) signaling. In turn, ATF3 protein inhibits the expression of various TLR-driven pro-inflammatory genes. Given its counter-regulatory role in diverse innate immune responses, we defined the effects of ATF3 on neutrophilic airway inflammation in mice. ATF3 deletion was associated with increased lipopolysaccharide (LPS)-driven airway epithelia production of CXCL1, but not CXCL2, findings concordant with a consensus ATF3-binding site identified solely in the Cxcl1 promoter. Unexpectedly, ATF3-deficient mice did not exhibit increased airway neutrophilia after LPS challenge. Bone marrow chimeras revealed a specific reduction in ATF3-/- neutrophil recruitment to wild type lungs. In vitro, ATF3-/- neutrophils exhibited a profound chemotaxis defect. Global gene expression analysis identified ablated Tiam2 expression in ATF3-/- neutrophils. TIAM2 regulates cellular motility by activating Rac1-mediated focal adhesion disassembly. Notably, ATF3-/- and ATF3-sufficient TIAM2 knockdown neutrophils, both lacking TIAM2, exhibited increased focal complex area, along with excessive CD11b-mediated F-actin polymerization. Together, our data describe a dichotomous role for ATF3-mediated regulation of neutrophilic responses: inhibition of neutrophil chemokine production, but promotion of neutrophil chemotaxis. Ly6G+ neutrophils were purified by magnetic beads from WT or ATF3 KO bone marrow and RNA was immediately isolated for global gene expression using microarrays.
Project description:we conducted gene expression profile analysis by using WT and Ezh2-deficient bone marrow-derived macrophages.Gene ontology (GO) analysis revealed the most prominent biological processes altered in macrophages upon LPS stimulation were associated with immune system process.