Project description:Neutrophil activation plays a critical role in the inflammatory response to gram-negative bacterial infections. Lipopolysaccharide (LPS) from gram-negative bacterial has been shown to be a major mediator of neutrophil activation to produce pro-inflammatory cytokines, chemokines and ROS which are important to tissue damage in LPS induced septic shock. We used microarrays to detail the global gene expression of neutrophils from miR-125a+/+ and miR-125a-/- mice after LPS stimulation.
Project description:Untargeted metabolites of supernatant of wild-type and Nlrp3-/- bone marrow-derived macrophages without stimulation or with 4 hours of LPS preconditioning and subsequently 30 min of ATP stimulation.
Project description:We cultured bone marrow derived dendritic cells from WT and CD11c KO mice. Then, a group of bone marrow dendritic cells were stimulated with LPS overnight. We obtained bone marrow derived dendritic cells with or without LPS stimulation and analyzed proteomics profiles.
Project description:We have performed analyses of murine primary bone marrow derived neutrophils challenged with either ultra-low dose or high dose of LPS. Neutrophils can be differentially programmed to distinct states by varying dosages of LPS. Purified bone marrow neutrophils were treated with PBS, 100 pg/ml LPS or 100 ng/ml LPS overnight, and harvested for scRNAseq analysis to examine their profiles of gene expression.
Project description:This study performed single-cell RNA sequencing (scRNA-seq) analyses on gene transcriptions of parental Wild-type and F508del-CF HL60 cell lines, and their DMSO-derived neutrophils with or without LPS stimulation.
Project description:We report the genome-wide RNA sequencing analysis in Il10-/- bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS) where IL-10 effect in macrophage inflammatory response was examined in IL-10-deficient BMDMs upon LPS stimulation with addition of exogenous IL-10.
Project description:We have generated immune-enhancing neutrophils by culturing murine primary bone marrow derived neutrophils with either super-low dose of LPS. Immune-enhancing neutrophils preferentially express co-stimulatory molecules such as CD74, CD44 and CD86, and exhibit reduced expression of CD11b. Purified bone marrow neutrophils were treated with PBS or 100 pg/ml LPS overnight in the presence of GM-CSF, and harvested for scRNAseq analysis to examine their profiles of gene expression.
Project description:Mitochondrial electron transport chain (ETC) function modulates macrophage biology, however, mechanisms underlying mitochondrial ETC control of macrophage immune responses are not fully understood. Here we report that mutant mice with mitochondrial ETC complex III (CIII)-deficient macrophages exhibit increased susceptibility to influenza A virus and LPS-induced endotoxic shock. Cultured bone marrow-derived macrophages (BMDMs) isolated from these mitochondrial CIII-deficient mice released less IL-10 than controls following TLR3 or TLR4 stimulation. Surprisingly, restoring mitochondrial respiration without generating superoxide using alternative oxidase (AOX) was not sufficient to reverse LPS-induced endotoxic shock susceptibility or restore IL-10 release. However, activation of protein kinase A (PKA) rescued IL-10 release in mitochondrial CIII-deficient BMDMs following LPS stimulation. Additionally, mitochondrial CIII deficiency did not affect BMDM responses to interleukin-4 (IL-4) stimulation. Thus, our results highlight the essential role of mitochondrial CIII generated superoxide in the release of anti-inflammatory IL-10 in response to TLR stimulation