Project description:Low back pain (LBP) is one of the most prevalent conditions which need medical advice and result in chronic disabilities. Degenerative disc disease (DDD) is a common reason for LBP. A lot of researchers think that CEP degeneration play critical roles in the initiation and development of DDD. In recent years, researchers have put interests on cell-based therapies for regenerating disc structure and function. Our research team has isolated cartilage endplate-derived stem cells (CESCs) and validated their chondrogenic and osteogenic differentiation ability. Enhanced chondrogenic differentiation and inhibited osteogenic differentiation of CESCs may retard CEP calcification and restore the nutrition supply, possibly regenerating the degenerated discs. We used Affymetrix Human Transcriptome Array 2.0 to study the global gene expression profilling and alternative splicing events during the chondrogenic and osteogenic differentiation of cartilage endplate-derived stem cells. The cartilage endplate-derived stem cells(CESCs) were induced to undergo chondrogenic(CD) and osteogenic differentiation(OD). Both undifferentiated and differentiated CESCs were sent for RNA extraction and hybridization on Affymetrix microarrays. A comparative analysis was done between the undifferentiated and differentiated samples.
Project description:Cartilage endplate-derived stem cells (CESCs) with chondro-osteogenic differentiation capacity may be responsible for the balance of chondrification and ossification in cartilage endplate (CEP). CEP is an avascular and hypoxic tissue, and hypoxia could influence the fate of CESCs. We used high-throughput scanning to identify differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) of CESCs under hypoxia compared to those under normoxia. Human cartilage endplate-derived stem cells (CESCs) were cultured under normoxia and hypoxia for 21 days respectively.
Project description:Cartilage endplate-derived stem cells (CESCs) with chondro-osteogenic differentiation capacity may be responsible for the balance of chondrification and ossification in cartilage endplate (CEP). CEP is an avascular and hypoxic tissue, and hypoxia could inhibit the osteogenic differentiation of CESCs. We used high-throughput scanning to identify differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) during osteogenic differentiation of CESCs under hypoxia compared to those induced under normoxia. Human cartilage endplate-derived stem cells (CESCs) were treated with osteogenic differentiation medium under normoxia and hypoxia for 21 days respectively.
Project description:Low back pain (LBP) is one of the most prevalent conditions which need medical advice and result in chronic disabilities. Degenerative disc disease (DDD) is a common reason for LBP. A lot of researchers think that CEP degeneration play critical roles in the initiation and development of DDD. In recent years, researchers have put interests on cell-based therapies for regenerating disc structure and function. Our research team has isolated cartilage endplate-derived stem cells (CESCs) and validated their chondrogenic and osteogenic differentiation ability. Enhanced chondrogenic differentiation and inhibited osteogenic differentiation of CESCs may retard CEP calcification and restore the nutrition supply, possibly regenerating the degenerated discs. We used Affymetrix Human Transcriptome Array 2.0 to study the global gene expression profilling and alternative splicing events during the chondrogenic and osteogenic differentiation of cartilage endplate-derived stem cells.
Project description:Cartilage endplate-derived stem cells (CESCs) with chondro-osteogenic differentiation capacity may be responsible for the balance of chondrification and ossification in cartilage endplate (CEP). CEP is an avascular and hypoxic tissue, and hypoxia could influence the fate of CESCs. We used high-throughput scanning to identify differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) of CESCs under hypoxia compared to those under normoxia.
Project description:Cartilage endplate-derived stem cells (CESCs) with chondro-osteogenic differentiation capacity may be responsible for the balance of chondrification and ossification in cartilage endplate (CEP). CEP is an avascular and hypoxic tissue, and hypoxia could inhibit the osteogenic differentiation of CESCs. We used high-throughput scanning to identify differentially expressed genes (DEGs) and alternatively spliced genes (ASGs) during osteogenic differentiation of CESCs under hypoxia compared to those induced under normoxia.
Project description:The degeneration of cartilage endplate in cervical disc is considered as a basis of cervical spondylosis. Owing to the important role of post-transcriptional gene regulation in phenotypes and functions of cells, non-coding ribonucleic acid (ncRNA) molecules contributed to the regulation.Degenerated cervical vertebral endplate cartilage specimens were collected from patients with cervical intervertebral disc degeneration (CIDD) that suffered from cervical spondylosis myelopathy, who had received anterior cervical discectomy and fusion (ACDF). CE specimens of healthy subjects were obtained from patients with a cervical fracture who received ACDF at The Second Affiliated Hospital of Nanchang University (Nanchang, China) and adopted SBC human ceRNA array V1.0(4×180K). The results revealed that expressions of369 lncRNAs, 246 mRNAs, 578 circRNAs were different between degenerated cartilage endplate and healthy cartilage endplate. The functions of differentially expressed lncRNAs and co-expressed potential targeting genes were predicted by analyzing Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis. Furthermore, we analyzed and find the co-expression and interaction patterns of different RNAs and possible ceRNA mechanism. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) in the degeneration of cartilage endplate in CIDD.
Project description:Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNASeq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role to determine chondrocyte fate.