Project description:Goal was to detect differences in response to TLR7 versus TLR8 agonists in human monocytes from healthy donors 3 deidentified donors from the Red Cross, monocytes from each donor incubated overnight with either vehicle, TLR7 agonist or TLR8 agonist
Project description:Toll like receptors (TLRs) sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). Since pathogens may contain several agonists we asked whether different TLRs may synergize in DC activation. We report that in human and mouse DC TLR3 or TLR4 potently synergize with TLR7, TLR8 or TLR9 in the induction of selected cytokine genes. Upon synergistic stimulation, IL-12, IL-23 and Delta-4 are induced at levels 50-100 fold higher than those induced by optimal concentrations of single agonists, leading to enhanced and sustained TH1 polarizing capacity. Using microarray analysis we show that only 1.5% of the transcripts induced by single TLR agonists are synergistically regulated by combinations of TLR4 and TLR8 agonists.. These results identify a combinatorial code by which DCs discriminate pathogens and provide (suggest) a rationale to design adjuvants for TH1 responses. Series_overall_design: 3 untreated, 3 treated with LPS at 2h, 3 treated with LPS at 8h, 3 treated with R848 at 2h, 3 treated with R848 at 8h, 3 treated with LPS + R848 at 2h, 3 treated with LPS + R848 at 8h
Project description:Monocytes and macrophages are essential cells in the early response in their capacity as ubiquitous phagocytic cells. They phagocytose microorganisms or damaged cells and sense pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through innate receptors such as Toll-like receptors (TLRs). We investigated a phenomenon where co-signaling from TLR2 and TLR8 in human primary monocytes provides a distinct immune activation profile compared to signaling from either TLR alone. Comparison of gene signatures induced by either stimulus alone or together, show that co-signaling result in downstream differences in regulation of signaling and gene transcription. To investigate the interaction of TLR2 and TLR8 stimulation primary human monocytes isolated from buffy coat were stimulated with TLR2/6 ligand FSL-1 and/or TLR7/8 ligand CL075 and the gene expression monitored at 1,2 and 3h post stimulation.
Project description:UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.
Project description:Toll like receptors (TLRs) sense microbial products and initiate adaptive immune responses by activating dendritic cells (DCs). Since pathogens may contain several agonists we asked whether different TLRs may synergize in DC activation. We report that in human and mouse DC TLR3 or TLR4 potently synergize with TLR7, TLR8 or TLR9 in the induction of selected cytokine genes. Upon synergistic stimulation, IL-12, IL-23 and Delta-4 are induced at levels 50-100 fold higher than those induced by optimal concentrations of single agonists, leading to enhanced and sustained TH1 polarizing capacity. Using microarray analysis we show that only 1.5% of the transcripts induced by single TLR agonists are synergistically regulated by combinations of TLR4 and TLR8 agonists.. These results identify a combinatorial code by which DCs discriminate pathogens and provide (suggest) a rationale to design adjuvants for TH1 responses. Series_overall_design: 3 untreated, 3 treated with LPS at 2h, 3 treated with LPS at 8h, 3 treated with R848 at 2h, 3 treated with R848 at 8h, 3 treated with LPS + R848 at 2h, 3 treated with LPS + R848 at 8h Keywords: other
Project description:To gain a comprehensive understanding of gene regulation in CXCL4 and TLR8 signaling crosstalk, we treated primary human blood monocytes with CXCL4 and TLR8 ssRNA ligand ORN8L for 6 h and performed transcriptomic analysis via RNA-seq. We observed that CXCL4 interacted with TLR8 ssRNA ligand and triggered inflammatory cytokine storm including IL6, IL12p40, TNF and IFNβ, and pro-fibrotic gene expression and activated NLRP3 inflammasome leading to interleukin-1β (IL-1β) secretion and pyroptosis in human blood monocytes.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:TLR3 and TLR7 are critical recognition receptor which reacts with viruses. TLR3 and TLR7 contribute to many immunological pathway. Especially, TLR3 and TLR7 are clearly involved in the regulation of innate immunity in the gut. To identify the downstream target of TLR 3 and TLR7 in the IBD, we carried out microarray. The colon tissues were isolated from four different groups. None-no treatment, after DSS treated, after DSS+antiviral treatment, after DSS+TLR3+7 agonists.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.