Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed using a 32K BAC tiling path array. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities.
Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed on the Affymetrix Human SNP Array v 6.0 platform. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities.
Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed using a 32K BAC tiling path array. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities. Breast tumor samples from young women (< 50 years old) were matched as follows: a matched pair consists of one AA and one EA sample, matched for tumor grade and tumor subtype (based on immunohistochemical analysis of ER, PR, and HER2 status). 44 experiments; each experiment is tumor DNA versus reference control DNA (AF) isolated from the blood of a 25-year-old African-American female with no familial or personal history of breast cancer. Additional control experiments included the AF reference versus the well-characterized F1 reference, and 3 self-self hybridization controls (AF versus AF).
Project description:In the United States, African-American (AA) women are more likely to develop early-onset breast cancer and have historically poorer outcomes due to this disease compared to European-American (EA) women. Here, we analyzed genomic profiles of breast tumors from young women (<50 years old), matched by tumor subtype, histological grade, and ethnicity (African-American, AA, compared to European-American, EA). DNA copy number alterations (CNAs) were analyzed on the Affymetrix Human SNP Array v 6.0 platform. The study provides insight into the genetic component of ethnicity-related breast cancer health disparities. DNA copy number alterations (CNAs) and genotypes were analyzed using the Affymetrix SNP 6.0 platform. Breast tumor samples from young women (< 50 years old) were matched as follows: a matched pair consists of one AA and one EA sample, matched for tumor grade and tumor subtype (based on immunohistochemical analysis of ER, PR, and HER2 status). DNA from forty-four samples (22 AA, 22 EA) was analyzed on the Affymetrix SNP 6.0 array according to manufacturer’s directions.
Project description:Triple negative breast cancer is an aggressive phenotypic breast cancer characterized by ER negative, PR negative and Her2 negative immunohistochemistry status. We embarked on a study to explore the transcriptome of African American and Caucasian TNBC patients and identify race specific biomarkers.
Project description:The incidence and mortality rates of prostate cancer are significantly higher in African-American men when compared to European-American men. We tested the hypothesis that differences in tumor biology contribute to this survival health disparity. Using microarray technology, we obtained gene expression profiles of primary prostate tumors resected from 33 African-American and 36 European-American patients. These tumors were matched on clinical parameters. We also evaluated 18 non-tumor prostate tissues from 7 African-American and 11 European-American patients. The resulting datasets were analyzed for expression differences on the gene and pathway level comparing African-American with European-American patients. Our analysis revealed a significant number of genes, e.g., 162 transcripts at a false-discovery rate less than 5%, to be differently expressed between African-American and European-American patients. Using a disease association analysis, we identified a common relationship of these transcripts with autoimmunity and inflammation. These findings were corroborated on the pathway level with numerous differently expressed genes clustering in immune response, stress response, cytokine signaling, and chemotaxis pathways. Furthermore, a two-gene tumor signature was identified that accurately differentiated between African-American and European-American patients. This finding was confirmed in a blinded analysis of a second sample set. In conclusion, the gene expression profiles of prostate tumors indicate prominent differences in tumor immunobiology between African-American and European-American men. The profiles portray the existence of a distinct tumor microenvironment in these two patient groups. Keywords: Microdissected tissue analysis
Project description:There is drastic racial disparities between Caucasian (CA) and African American (AA) for breast cancer. Circulating microRNAs exhibit stability and may serve as biomarkers in clinical settings. To discover potential microRNAs that mediate intercellular crosstalk and as biomarkers underlying the breast cancer racial disparity, serum exosomes from CA and AA were extracted and analyzed for its microRNA contents using small RNA sequencing.