Project description:We identified PRP4 kinase-A (PRP4ka) in a forward genetic screen based on an alternatively-spliced GFP reporter gene in Arabidopsis thaliana (Arabidopsis). Prp4 kinase, which was the first spliceosome-associated kinase shown to regulate splicing in fungi and mammals, has not yet been studied in plants. Analysis of RNA-seq data from the prp4ka mutant revealed widespread perturbations in alternative splicing. A quantitative iTRAQ-based phosphoproteomics investigation of the mutant identified phosphorylation changes in several serine/arginine-rich proteins, which regulate constitutive and alternative splicing, as well as other splicing-related factors. The results demonstrate the importance of PRP4ka in alternative splicing and suggest that PRP4ka may influence alternative splicing patterns by phosphorylating a subset of splicing regulators.
Project description:Two Arabidopsis thaliana splicing factor [AtU2AF65 isoforms (AtU2AF65a and AtU2AF65b)] mutants displayed the opposite flowering phenotypes. To assay the RNA processing including alternative splicing and pre-mRNA splicing of target genes of this protein in Arabidopsis, the 7-day seedlings (shoot apices) of wild type atu2af65a and atu2af65b mutants were used for RNA-Seq.
Project description:How plants control the transition to flowering in response to ambient temperature is only beginning to be understood. In Arabidopsis thaliana, the MADS-box transcription factor genes FLOWERING LOCUS M (FLM) and SHORT VEGETATIVE PHASE (SVP) have key roles in this process. FLM is subject to temperature-dependent alternative splicing, producing two splice variants, FLM-M-NM-2 and FLM-M-NM-4, which compete for interaction with the floral repressor SVP. The SVP/FLM-M-NM-2 complex is predominately formed at low temperatures and prevents precocious flowering. In contrast, the competing SVP FLM-M-NM-4 complex is impaired in DNA binding and acts as a dominant negative activator of flowering at higher temperatures. Our results demonstrate the importance of temperature-dependent alternative splicing in modulating the timing of the floral transition in response to environmental change. ChIP-seq A. thaliana FLM (3 replicates for gFLM and 2 replicates for FLM splice variants)
Project description:This study investigates extent and functional significance of alternative splicing in Arabidopsis thaliana defense against the bacterial pathogen Pseudomonas syringae pv tomato (Pst). We have provided a detailed characterization of the Arabidopsis thaliana transcriptional response to Pseudomonas syringae infection in both susceptible and resistant hosts. We carried out two independent inoculation experiments (biological replicates) for each treatment. Col-0 is susceptible to virulent Pst DC3000 but has a functional RPS4 resistance gene effective against DC3000 expressing AvrRps4
Project description:In all living organisms, regulation of gene expression is fundamental for survival and adaptation. Gene expression can be modulated at various steps, including at the level of RNA processing. During the last few years, the importance of alternative splicing of mRNAs in controlling plant development and stress responses were emerged and highlighted its importance. Recently, an other type of alternative splicing has been reported which leads to the generation of circular RNAs (circRNAs), a novel class on endogenous noncoding RNAs. Several functions of circular RNAs have been proven or proposed, including functioning as microRNA or RNA-binding protein decoys, playing regulatory roles in gene expression or affecting transcriptional control via special RNA-RNA interactions. Despite the widening knowledge of circRNAs and their functional aspects in the animal kingdom, relatively little is known about circRNAs in plants. In order to detect and classify circRNAs in Arabidopsis thaliana, we created a workflow that includes generation of Illumina libraries enriched for circRNAs and a comparison of biocomputational tools developed for detecting endogenous circular RNAs in other species. With the power of high-throughput sequencing and evaluation of algorithms, high-fidelity candidates were subjected for an analysis of their functional role in plant development and stress-related responses, especially regarding the role of splicing, including alternative splicing events, splice site preference and strength variances and transcript composition and to comprehend the role of RNA processing in stress response. Here we present an approach combining bioinformatic tools and molecular techniques to investigate the adaptability of detection methods of circRNAs from other species to plant circular RNAs, and based on our high-fidelity results identify and understand the characteristics of circRNAs in Arabidopsis thaliana.