ABSTRACT: Real-time quantitative PCR analysis of microRNA expression in neonatal cardiovascular progenitors before and after 7 Days of simulated microgravity.
Project description:Human cardiovascular progenitors were isolated from neonatal (<1 month old) atrial tissue and cloned by single cell dilution. MicroRNA expression in neonatal cardiovascular progenitor cell (CPC) clones was compared before and after exposure to simulated microgravity using sabiosciences cell development & differentiation miRNA PCR array.
Project description:Identification of gravisensitive miRNAs expression in rat soleus muscle exposed to 7 and 14 days of Hindlimb suspension (HS) simulated microgravity. Microgravity causes muscle atrophy possibly due to muscle wasting overtake regeneration. Results provide insight into the molecular mechanisms regulating muscle atrophy. The expression of 23 out of 174 miRNAs was found to change at least 2-fold of 7 and/or 14 days of TS. By using real-time PCR assays, we verified the microarray data using some of the expected genes.
Project description:On-demand biomanufacturing has the potential to improve healthcare and self- sufficiency during space missions. Cell-free transcription and translation reactions combined with DNA blueprints can produce promising therapeutics like bacteriophages and virus-like particles. However, how space conditions affect the synthesis and self-assembly of such complex multi- protein structures is unknown. Here, we characterize the cell-free production of infectious bacteriophage T7 virions under simulated microgravity. Rotation in a 2D-clinostat increased the number of infectious particles compared to static controls. Quantitative analyses by mass spectrometry, immuno-dot-blot and real-time PCR showed no significant differences in protein and DNA contents, suggesting enhanced self-assembly of T7 phages in simulated microgravity. While the effects of genuine space conditions on the cell-free synthesis and assembly of bacteriophages remain to be investigated, our findings support the vision of a cell-free synthesis-enabled “astropharmacy”.
Project description:Identification of gravisensitive gene expression in rat soleus muscle exposed to 7 and 14 days of Hindlimb suspension (HS) simulated microgravity. Microgravity causes muscle atrophy possibly due to muscle wasting overtake regeneration. Results provide insight into the molecular mechanisms regulating muscle atrophy. The expression of 787 (373 upregulated and 414 downregulated) and 923 (491 upregulated and 432 downregulated) genes out of 28000 was altered respectively at least 2-fold of 7 and 14 days TS, which represented 397 (233 upregulated and 164 downregulated) genes of common alteration. By using real-time PCR assays, we verified the microarray data using some of the expected genes.
Project description:Exposure to microgravity causes bone loss in humans, and the underlying mechanism is believed to be at least partially due to a decrease in bone formation by osteoblasts. Here, we examined the hypothesis that microgravity changes osteoblast gene expression profiles, resulting in bone loss. For this study, we developed an in vitro system that simulates microgravity using the Random Positioning Machine (RPM) to study the effects of microgravity on 2T3 pre-osteoblast cells grown in gas-permeable culture disks. Exposure of 2T3 cells to simulated microgravity using RPM for up to 9 days significantly inhibited alkaline phosphatase activity, recapitulating an expected bone loss response, without altering cell proliferation and shape. Next, we carried out a DNA microarray analysis to determine the gene expression profile of 2T3 cells exposed to 3 days of simulated microgravity. Among 10,000 genes examined with the microarray, 88 were downregulated while 52 were upregulated significantly by simulated microgravity by more than two-fold in comparison to the static 1g condition. By using real-time PCR assays, we verified the microarray data using some of the expected genes. For example, we confirmed that microgravity induced downregulation of alkaline phosphatase, runt related transcription factor 2 (runx2), osteomodulin, and parathyroid hormone 1 receptor, while confirming upregulation of cathepsin K mRNAs. In addition to the changes of the expected genes, the microarray data identified many more genes. The identification of these gravisensitive genes provide an useful insight in generating further hypotheses regarding their roles not only in microgravity-induced bone loss, but also in general population of patients with similar pathologic conditions such as osteoporosis. Keywords: other
Project description:Identification of gravisensitive miRNAs expression in rat soleus muscle exposed to 7 and 14 days of Hindlimb suspension (HS) simulated microgravity. Microgravity causes muscle atrophy possibly due to muscle wasting overtake regeneration. Results provide insight into the molecular mechanisms regulating muscle atrophy. The expression of 23 out of 174 miRNAs was found to change at least 2-fold of 7 and/or 14 days of TS. By using real-time PCR assays, we verified the microarray data using some of the expected genes. The tissue was collected from Sprague-Dawley rats (8 weeks of age) subjected to 7, 14days of TS. miRNA expression profile was determined in three groups: control (CN), TS for 7 days (TS-7), and TS for 14 days (TS-14).Three miRNA microarray chips were analyzed for mixture of four samples of each of the three groups.
Project description:au11-03_gravite - action of microgravity on root development - Action of microgravity on root development - Arabidopsis were grown on horizontal or vertical clinostat for 4, 8 or 12 days. Seedlings on horizontal clinostat were in simulated microgravity and seedlings on vertical clinostat are considered as a control. Comparison was made between plants grown on simulated microgravitry and vertical position.
Project description:Identification of gravisensitive gene expression in rat soleus muscle exposed to 7 and 14 days of Hindlimb suspension (HS) simulated microgravity. Microgravity causes muscle atrophy possibly due to muscle wasting overtake regeneration. Results provide insight into the molecular mechanisms regulating muscle atrophy. The expression of 787 (373 upregulated and 414 downregulated) and 923 (491 upregulated and 432 downregulated) genes out of 28000 was altered respectively at least 2-fold of 7 and 14 days TS, which represented 397 (233 upregulated and 164 downregulated) genes of common alteration. By using real-time PCR assays, we verified the microarray data using some of the expected genes. The tissue was collected from Sprague-Dawley rats (8 weeks of age) subjected to 7, 14days of TS. mRNA expression profile was determined in three groups: control (CN), TS for 7 days (TS-7), and TS for 14 days (TS-14).Three mRNA microarray chips were analyzed for mixture of four samples of each of the three groups.
Project description:au11-03_gravite - action of microgravity on root development - Action of microgravity on root development - Arabidopsis were grown on horizontal or vertical clinostat for 4, 8 or 12 days. Seedlings on horizontal clinostat were in simulated microgravity and seedlings on vertical clinostat are considered as a control. Comparison was made between plants grown on simulated microgravitry and vertical position. 6 dye-swap - treated vs untreated comparison