Project description:To investigate glucose intolerance and white adipocyte hypertrophy shown in ZFP251 knockout (KO) mice, We performed gene expression profiling analysis using data obtained from the RNA-seq of epididymal white adipose tissue (eWAT).
Project description:To investigate the role of the transcriptional repressor Rev-erb alpha in epididymal white adipose tissue, we performed a microarray analysis of gene expression in the epididymal white adipose tissue of wildtype and Rev-erb alpha knock-out mice. Examination of the transcriptome in epididymal white adipose tissue of Rev-erb alpha kockout mice compared to wildtype mice.
Project description:Compare miRNA expression profiles in epididymal white adipose tissue (WAT), interscapular brown adipose tissue (BAT) and skeletal muscle from wild-type C57BL/6J mice
Project description:To investigate the role of the transcriptional repressor Rev-erb alpha in epididymal white adipose tissue, we performed a microarray analysis of gene expression in the epididymal white adipose tissue of wildtype and Rev-erb alpha knock-out mice.
Project description:The goal of this study is to identify the cistrome of the transcriptional repressor Rev-erb alpha in epididymal white adipose tissue. Performing Rev-erb alpha ChIP-seq on epididymal white adipose tissue from wildtype mice at 5PM when Rev-erb alpha protein level peaks in wild type (WT) mice, we were able to globally determine the genomic regions undergoing Rev-erb alpha-dependent de-repression. Examination of Rev-erb alpha binding in epididymal white adipose tissue.
Project description:Visceral white adipose tissue is closed correlated with obesity and metabolic dysfunction. Epididymal adipose tissue (eWAT) is considered as typical visceral white adipose tissue. Induction of browning of white adipose tissue improves metabolic dysfunction such as insulin resistance. In contrast to mice subcutaneous adipose tissue, visceral fat do not show significant browning under 4°C. However,under physiologically tolerable low temperature visceral adipose tissue can turn brown. We used microarrays to detail the global programme of gene expression in C57Bl/6 mice epididymal adipose tissue exposed to thermoneutral 30°C, 4°C and temperatures lower than 4°C.
Project description:The aim was to compare the global gene expression of epididymal white adipose tissue (eWAT) of WT and Irx5-KO mice. Mice 10 weeks of age were fed a high-fat diet for 10 weeks before eWAT was dissected out, RNA extracted and microarray performed
Project description:We identified differentially expressed genes in epididymal white adipose tissue of high fat diet(HFD)-fed mice compared to low fat diet-fed mice using microarray analysis. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity, and skeletal system development were downregulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodeling, and inflammation were upregulated. The top 10 up- or downregulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1, and Gpnmb, whose roles in obesity-associated adipose tissue deterioration are poorly understood. Total RNA of epididymal white adipose tissue was obtained from low fat diet (10 kcal% fat)- and high fat diet(45 kcal% fat)-fed mice and mRNA expression was measured using microarray analysis.