Project description:We have generated expression profiles of induced pluripotent stem cells (iPSCs) and iPSC-derived neural crest populations from Familial Dysautonomia patients. These profiles were compared to a normal iPSC line that does not harbor the IKBKAP mutation. All cell types were differentiated from patient derived iPSCs. Bulk iPSCs were harvested for RNA and the neural crest populations were sorted on day 18 for p75/HNK1 before RNA isolation.
Project description:We have generated expression profiles of induced pluripotent stem cells (iPSCs) and iPSC-derived neural crest populations from Familial Dysautonomia patients. These profiles were compared to a normal iPSC line that does not harbor the IKBKAP mutation.
Project description:Global gene expression analysis of FD-iPSC and deribved neural crest cells Here we report the derivation of patient specific Familial Dysautonomia-iPSCs and their directed differentiation into multiple cell types capable of modeling the tissue specific splicing defect in vitro. Undifferentiated hESCs were exposed to control and drug treatments for 24 hours followed by mRNA expression analysis Global gene expression analysis of FD-iPSC and derived neural crest cells
Project description:Global gene expression analysis of FD-iPSC and deribved neural crest cells Here we report the derivation of patient specific Familial Dysautonomia-iPSCs and their directed differentiation into multiple cell types capable of modeling the tissue specific splicing defect in vitro.
Project description:Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Melanocyte dysfunction leads to pigmentation defects including albinism, vitiligo, and piebaldism and is a key feature of systemic pathologies such as Hermansky-Pudlak (HP) and Chediak-Higashi (CH) Syndromes. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Surprisingly, suppression of BMP signaling does reduce neural crest yield. Subsequent differentiation of hESC-derived melanocyte precursors under defined conditions yields pure populations of pigmented cells matching the molecular and functional properties of adult melanocytes. Melanocytes from patient-specific iPSCs faithfully reproduce the ultrastructural features of the HP- and CH-specific pigmentation defects with minimal variability across lines. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. Total RNA obtained from a timecourse of Dual SMAD Inhibition (DSi), Neural Crest (NC), and Melanocyte (BE) differentiation of human embryonic stem cells in triplicate.
Project description:Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Melanocyte dysfunction leads to pigmentation defects including albinism, vitiligo, and piebaldism and is a key feature of systemic pathologies such as Hermansky-Pudlak (HP) and Chediak-Higashi (CH) Syndromes. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Surprisingly, suppression of BMP signaling does reduce neural crest yield. Subsequent differentiation of hESC-derived melanocyte precursors under defined conditions yields pure populations of pigmented cells matching the molecular and functional properties of adult melanocytes. Melanocytes from patient-specific iPSCs faithfully reproduce the ultrastructural features of the HP- and CH-specific pigmentation defects with minimal variability across lines. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders. Total RNA obtained from embryonic stem cells (ESCs), ESC-derived melanocyte progenitors, ESC-derived mature melanocytes, primary melanocytes, and disease-specific induced pluripotent stem cell-derived melanocytes.
Project description:<p>Familial Dysautonomia (FD) is a developmental and degenerative genetic disease that manifests in the neural crest cells and peripheral nervous system (PNS). Despite all FD patients having the same mutation in <i>IKBKAP</i>, patients present with varying disease severity, ranging from mild to severe. We used the human pluripotent stem cell technology to recapitulate this varying disease severity in the dish. Further, we found that severe, but not mild patients harbor mutations in candidate modifier genes that may contribute to severe disease presentation.</p>
Project description:Human olfactory ecto-mesenchymal stem cells (hOE-MSCs) from controls and familial dysautonomia (FD) patients were cultured in either sphere-forming conditions (ITS + EGF + bFGF) or in the presence of retinoic acid, forskolin and Sonic Hedgehog (rafnshh) for 7 days to induce neuroglial differentiation and were also treated or not with kinetin (100 mM for 48h) which corrects the aberrant splicing of IKBKAP mRNA. We used the recently described model of human olfactory ecto-mesenchymal stem cells to identify genes differentially expressed between controls and familial dysautonomia patients, and also the genes sensitive to kinetin which corrects aberrant splicing of IKBKAP mRNA Total RNAs were extracted from 20 samples including: 4 control and 4 FD hOE-MSCs-derived sphere cultures, 4 control and 4 FD rafnshh-treated hOE-MSCs, 4 FD rafnshh-treated hOE-MSCs in the presence of kinetin
Project description:Melanocytes are pigment-producing cells of neural crest origin responsible for protecting the skin against UV-irradiation. Melanocyte dysfunction leads to pigmentation defects including albinism, vitiligo, and piebaldism and is a key feature of systemic pathologies such as Hermansky-Pudlak (HP) and Chediak-Higashi (CH) Syndromes. Pluripotent stem cell technology offers a novel approach for studying human melanocyte development and disease. Here we report that timed exposure to activators of WNT, BMP and EDN3 signaling triggers the sequential induction of neural crest and melanocyte precursor fates under dual-SMAD inhibition conditions. Using a SOX10::GFP hESC reporter line, we demonstrate that the temporal onset of WNT activation is particularly critical for human neural crest induction. Surprisingly, suppression of BMP signaling does reduce neural crest yield. Subsequent differentiation of hESC-derived melanocyte precursors under defined conditions yields pure populations of pigmented cells matching the molecular and functional properties of adult melanocytes. Melanocytes from patient-specific iPSCs faithfully reproduce the ultrastructural features of the HP- and CH-specific pigmentation defects with minimal variability across lines. Our data define a highly specific requirement for WNT signaling during neural crest induction and enable the generation of pure populations of hiPSC-derived melanocytes for faithful modeling of human pigmentation disorders.