Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: DNA copy-number alterations (CNA) were compared between primary and metastasis derived cell lines. In concordance with previous studies copy-number gain of chr20, and loss of chr8p were found highly specific for liver metastases. Previously reported BRAF-mutation associated DNA methylation profiles could be validated on the genome-wide DNA methylation profiles of these cell lines. 47.6% of the loci previously reported to associate with BRAF mutation status were reproduced in this dataset. When examining the gene expression profiles in conjunction with these DNA methylation results, we identified 20 genes of which the gene expression correlated with the DNA methylation status, including MEIS1, LRAT and STC2. These genes have previously been reported to be subject to transcriptional regulation through DNA hypermethylation, validating our approach. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. 21 CRC cell lines were analyzed
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: DNA copy-number alterations (CNA) were compared between primary and metastasis derived cell lines. In concordance with previous studies copy-number gain of chr20, and loss of chr8p were found highly specific for liver metastases. Previously reported BRAF-mutation associated DNA methylation profiles could be validated on the genome-wide DNA methylation profiles of these cell lines. 47.6% of the loci previously reported to associate with BRAF mutation status were reproduced in this dataset. When examining the gene expression profiles in conjunction with these DNA methylation results, we identified 20 genes of which the gene expression correlated with the DNA methylation status, including MEIS1, LRAT and STC2. These genes have previously been reported to be subject to transcriptional regulation through DNA hypermethylation, validating our approach. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. SNP-array analysis of 21 novel CRC cell lines; 16 with Illumina HumanExome-12 v1.2 BeadChip and 5 with Illumina HumanExome-12 v1.0 BeadChip.
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: DNA copy-number alterations (CNA) were compared between primary and metastasis derived cell lines. In concordance with previous studies copy-number gain of chr20, and loss of chr8p were found highly specific for liver metastases. Previously reported BRAF-mutation associated DNA methylation profiles could be validated on the genome-wide DNA methylation profiles of these cell lines. 47.6% of the loci previously reported to associate with BRAF mutation status were reproduced in this dataset. When examining the gene expression profiles in conjunction with these DNA methylation results, we identified 20 genes of which the gene expression correlated with the DNA methylation status, including MEIS1, LRAT and STC2. These genes have previously been reported to be subject to transcriptional regulation through DNA hypermethylation, validating our approach. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC.
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: DNA copy-number alterations (CNA) were compared between primary and metastasis derived cell lines. In concordance with previous studies copy-number gain of chr20, and loss of chr8p were found highly specific for liver metastases. Previously reported BRAF-mutation associated DNA methylation profiles could be validated on the genome-wide DNA methylation profiles of these cell lines. 47.6% of the loci previously reported to associate with BRAF mutation status were reproduced in this dataset. When examining the gene expression profiles in conjunction with these DNA methylation results, we identified 20 genes of which the gene expression correlated with the DNA methylation status, including MEIS1, LRAT and STC2. These genes have previously been reported to be subject to transcriptional regulation through DNA hypermethylation, validating our approach. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC.
Project description:We treated melanoma cells with BRAF mutation with BRAF inhibitor and screened for BRAF inhibitor resistant cells. We extracted DNA from parental cells and resistant cell lines. We compared the DNA methylation via Illumina 450K Methylation Array
Project description:We treated melanoma cells with BRAF mutation with BRAF inhibitor and screened for BRAF inhibitor resistant cells. We extracted DNA from parental cells and resistant cell lines. We compared the DNA methylation via Illumina 450K Methylation Array Bisulphite converted DNA from the 4 specimens was hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:Aberrant DNA methylation, one of the major epigenetic alterations in cancer, has been reported to accumulate in a subset of colorectal cancer (CRC), so-called CpG island methylator phenotype (CIMP), which was known to correlate with microsatellite instability (MSI)-high CRC. To select new methylation markers genome-widely and epigenotype CRC by DNA methylation comprehensively, we performed methylated DNA immunoprecipitation-on-chip analysis using MSI-high CRC cell line HCT116 and microsatellite-stable SW480, and re-expression array analysis by 5-aza-2-deoxycytidine/Trichostatin A. Methylation levels of 44 new markers selected and 16 previously reported markers were analyzed quantitatively in 149 clinical CRC samples using MALDI-TOF mass spectrometry. By unsupervised two-way hierarchical clustering, CRC was clustered into high-, intermediate-, and low-methylation epigenotypes. Methylation markers were clustered into two groups: Group-1 showing methylation in high-methylation epigenotype and including all the 11 CIMP-related markers except NEUROG1, and Group-2 showing methylation in high- and intermediate-methylation epigenotypes. Marker panel deciding methylation epigenotypes with the highest accuracy was developed: 1st-Panel consisting of Group-1 genes (CACNA1G, LOX, SLC30A10) to extract high-methylation epigenotype, and 2nd-Panel consisting of Group-2 genes (ELMO1, FBN2, THBD, HAND1) and SLC30A10 again to divide the remains into intermediate- and low-methylation epigenotypes. High-methylation epigenotype correlated significantly with BRAF mutation, MSI, proximal tumor location, and mucinous component, in concordance with reported CIMP. Intermediate- and low-methylation epigenotypes significantly correlated with KRAS-mutation(+) and KRAS-mutation(-), respectively. KRAS-mutation(+) intermediate-methylation epigenotype showed worse prognosis than KRAS-mutation(-) low-methylation epigenotype (p=0.030). These three epigenotypes with different genetic characteristics suggested different molecular CRC genesis, and the markers might be useful to predict prognosis.
Project description:Despite the connection to distinct mucus-containing colorectal cancer (CRC) histological subtypes, the role of secretory cells, including goblet and enteroendocrine (EEC) cells, in CRC progression has been underexplored. Analysis of TCGA and single cell RNA sequencing data demonstrates that multiple secretory progenitor populations are enriched in BRAF-mutant CRC patient tumors and cell lines. Enrichment of EEC progenitors in BRAF-mutant CRC is maintained by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of EECs. Mechanistically, secretory cells and the factors they secrete, such as Trefoil factor 3, are shown to promote colony formation and activation of cell survival pathways in the entire cell population. We further identify LSD1 as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss reduces tumor growth and metastasis. This work establishes EEC progenitors, in addition to goblet cells, as targetable populations in BRAF-mutant CRC and identifies LSD1 as a therapeutic target in secretory lineage-containing CRC.
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. SNP-array analysis of 21 novel CRC cell lines; 16 with Illumina HumanExome-12 v1.2 BeadChip and 5 with Illumina HumanExome-12 v1.0.
Project description:Background: In vitro models are an essential tool towards understanding the molecular characteristics of colorectal cancer (CRC) and the testing of therapies for CRC. To this end we established 21 novel CRC cell lines of which six were derived from liver metastases. Extensive genetic, genomic, transcriptomic and methylomic profiling was performed in order to characterize these new cell lines and all data is made publically available. Additionally, sensitivity of oxaliplatin was tested as a measure for chemotherapy resistance. Results: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC. Conclusions: By combining mutation profiles with CNA and gene expression profiles we constructed an overview of the alterations in the major CRC-related signalling pathways. The mutation profiles, along with the genome, transcriptome and methylome data of these cell lines will be made publically available . This combined dataset puts these cell lines among the best characterized CRC cell lines, allowing researchers to select appropriate cell line models for their particular experiment, making optimal use of these novel cell lines as in vitro model for CRC.