Project description:C57Bl6/J male mice were put on different diets at 5 weeks of age, with a standard diet (SD) or a High-Fat High-Sucrose Diet (HFHS) or a Choline-Deficient High-Fat Diet (CDHFD) during 6 months. Primary hepatocytes cultures from 3 different models were synchronized in the cell cycle. Transcriptomic analysis was perfomed at 48hours of culture when HFHS and CDHFD hepatocytes harbor replication stress.
Project description:Genome wide DNA methylation profiling of liver tissues from Pemt-/- and Pemt+/+ under HFHS diets. Pemt-/- and Pemt+/+ mice were fed HFHS from 5 to 25 weeks of age and liver tissues were obtained at 25 weeks. Bisulphite converted DNAs were enriched with EpiXplore Methylation DNA Enrichment Kit (Clontech). Genomic DNA libraries was prepared by TruSeq ChIP Sample Preparation Kit.
Project description:We used microarrays to detail the global programme of gene expression in the liver of Pemt-/- and Pemt+/+ under HFHS diets. Liver sample of Pemt-/- and Pemt+/+ mice under HFHS for 1, 2, 3, 4 weeks were used for RNA extraction and hybridization on Affymetrix microarrays. Genes in liver of Pemt-/- mice, successively suppressed compared with Pemt+/+ mice, were obtained.
Project description:In order to study the heart disorder that the long term, high energy diet caused, Bama miniature pigs were fed a high-fat, high-sucrose diet for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. The control group consisted of 6 Bama pigs fed a control diet, and the HFHSD group comprised 6 pigs that were induced with a HFHS diet, which included 37% sucrose, 53% control diet and 10% pork lard. The pigs were fed twice every day and provided water ad libitum for 23 months. The pigs were fasted for 12 hours and euthanized with ketamine and xylazine. Pig hearts from the HFHSD group pigs (120, 126, 138, 140, 144, and 146) and three control group pigs (157, 159, and 161) were sampled and preserved in liquid nitrogen and then for RNA extraction and hybridization on Affymetrix microarrays.
Project description:There is growing evidence that energy metabolism and insulin action are regulated by mechanisms that follow a diurnal rhythm and it has been proposed that defects in Akt signalling are associated with the pathophysiology of metabolic disease. It is therefore important to investigate these parameters under physiology of the free-living state. We therefore examined the insulin action in muscle of chow or high fat, high sucrose diet-fed (HFHS) rats during the normal diurnal cycle. HFHS animals displayed hyperinsulinemia, however had reduced systemic glucose disposal and impaired muscle glucose uptake during the feeding period. Proteomics and phosphoproteomics was performed over the diurnal cycle in chow and HFHS rats.