Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
| 2533916 | ecrin-mdr-crc
Project description:The complete mitochondrial genome of Gnathostoma binucleatum
Project description:With the whole genome SNP array information obtained from tumor and matched normal control, we could evaluate the acquired copy number variations (CNVs) and uniparental disomies (UPDs) . Seven MDS patients in a whole genome sequencing project were included in this experiment.
2014-05-22 | GSE57229 | GEO
Project description:Transcriptome of third-stage larva Gnathostoma spinigerum
Project description:The study is intended to collect specimens to support the application of genome analysis technologies, including large-scale genome sequencing. This study will ultimately provide cancer researchers with specimens that they can use to develop comprehensive catalogs of genomic information on at least 50 types of human cancer. The study will create a resource available to the worldwide research community that could be used to identify and accelerate the development of new diagnostic and prognostic markers, new targets for pharmaceutical interventions, and new cancer prevention and treatment strategies. This study will be a competitive enrollment study conducted at multiple institutions.
Project description:This paper *potentially* provides a useful transcriptomic and proteomic resource for the parasitic nematode Gnathostoma spinigerum. Most importantly, the paper gives not only proteomics data but also immunoblot data for antigenic responses of infected humans against G. spinigerum proteins that were probably secreted into human hosts in vivo. These data are potentially useful to biomedicine.
Project description:modENCODE_submission_4976 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_4974 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf
Project description:modENCODE_submission_5011 This submission comes from a modENCODE project of Kevin White. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The White Lab is aiming to map the association of all the Transcription Factors (TF) on the genome of Drosophila melanogaster. One technique that we use for this purpose is chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) utilizing an Illumina next generation sequencing platform. The data generated by ChIP-seq experiments consist basically of a plot of signal intensity across the genome. The highest signals correspond to positions in the genome occupied by the tested TF. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf