Project description:Most blue color in flowers is due to anthocyanin, and considerable proportion of blue coloration can be attributed to metal-complexed anthocyanins. Recently, we reported vacuolar localized iron-transporter in blue petal cells of Tulipa gesneriana. However the mechanism of another metal ion transporters and subsequent flower color development has yet to be fully explored. In Hydrangea macrophylla, Al3+ is involved in blue coloration and the anthocyanin is formed Al3+-complex in vacuoles. To identify the molecular mechanism of blue coloration in hydrangea flowers, we tried to isolate the related genes transporting metal ion into vacuoles. From the sepal cDNA library we read the sequences of ca. 12000 genes, then a microarray analysis was carried out. From the sequences information, we chose several genes that might localize vacuolar membrane and transport Al3+. By using Al3+-sensitive yeast strain, we could identify the gene transporting Al3+ into vacuole. From the functional similarity and predicted localization, we could also identify the gene transporting Al3+ into cytosol. We will report the Al3+ mobilization from out of cell into vacuole in the sepal of Hydrangea macrophylla.
Project description:Most blue color in flowers is due to anthocyanin, and considerable proportion of blue coloration can be attributed to metal-complexed anthocyanins. Recently, we reported vacuolar localized iron-transporter in blue petal cells of Tulipa gesneriana. However the mechanism of another metal ion transporters and subsequent flower color development has yet to be fully explored. In Hydrangea macrophylla, Al3+ is involved in blue coloration and the anthocyanin is formed Al3+-complex in vacuoles. To identify the molecular mechanism of blue coloration in hydrangea flowers, we tried to isolate the related genes transporting metal ion into vacuoles. From the sepal cDNA library we read the sequences of ca. 12000 genes, then a microarray analysis was carried out. From the sequences information, we chose several genes that might localize vacuolar membrane and transport Al3+. By using Al3+-sensitive yeast strain, we could identify the gene transporting Al3+ into vacuole. From the functional similarity and predicted localization, we could also identify the gene transporting Al3+ into cytosol. We will report the Al3+ mobilization from out of cell into vacuole in the sepal of Hydrangea macrophylla. Three sepal pigmentation stages were chosen: S1=no pigmentation-sepal closed; S2=started pigmentation-sepal opening; and S3=pigmentation complete-sepal opened. One pooled sepal sample per stage was prepared and gene expression pattern was analyzed by custom-designed Hydrangea oligo DNA microarray (CombiMatrix 12K). The genes that were expressed >2-fold or <0.5-fold in S3 compared with S1 and S2 were selected as potential players involved in sepal pigmentation due to aluminum accumulation.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of posaconazole. Whole genome microarrays were used to compare the transcriptional response of the posaconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of fluconazole. Whole genome microarrays were used to compare the transcriptional response of the fluconazole-resistant and susceptible isolates.
Project description:Azole resistance was induced in vitro by growth of a susceptible C. parapsilosis isolate in the presence of voriconazole. Whole genome microarrays were used to compare the transcriptional response of the voriconizole-resistant and susceptible isolates.
Project description:The present study describes a novel mechanism of antifungal resistance affecting the susceptibility of both the azole and echinocandin antifungals in an azole-resistant isolate from a matched pair of C. parapsilosis isolates obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate including upregulation of ERG1, ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, ERG27, DAP1 and UPC2, of the ergosterol biosynthesis pathway. Whole genome sequencing revealed a mutation in the ERG3 gene leading to a G111R amino acid substitution in the resistant isolate. Subsequent introduction of this allele in the native ERG3 locus in the susceptible isolate resulted in a fluconazole MIC of >64 mg/ml and a caspofungin MIC of 8 mg/ml. Corresponding allelic replacement of the wildtype allele for the mutant allele in the resistant isolate resulted in a drop in MIC to 1 mg/ml for both fluconazole and caspofungin. Sterol profiles indicated a loss of sterol demethylase activity as a result of this mutation. This work demonstrate that this G111R mutation is wholly responsible for the resistant phenotype in the C. parapsilosis resistant isolate and is the first report of this multidrug resistance mechanism.
Project description:We performed RNA-sequencing of Bgh-infected barley leaves at two different time-points after infection to examine gene expression in the barley powdery mildew isolate DH14 during plant pathogenesis.
Project description:description Blastocystis sp. is a highly prevalent anaerobic eukaryotic parasite of humans and animals. The genome of several representatives has been sequenced revealing specific traits such as an intriguing 3’-end processing of primary transcripts. We have acquired a first high-throughput proteomics dataset on the difficult to cultivate ST4 isolate WR1 and detected 2,761 proteins. We evidenced for the first time by proteogenomics a functional termination codon derived from transcript polyadenylation for seven different key cellular components.