Project description:To study short term (48h) hepatic transcriptional changes and identify potential modes of action in primary rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to 0.03, 0.3, 3 and 30nM EE2. The transcriptional gene expression analysis involved a high density (60k) custom designed oligonucleotide salmonid microarray in combination with quantitative real-time polymerase chain reaction (qPCR). Differently expressed genes (DEGs) were obtained after application of a one-way analysis of variance (ANOVA) and Tukey posthoc test. Enrichment analysis was performed based on Gene Ontology (GO) to determine the biological roles of the DEGs. The obtained DEGs were further mapped against mammalian orthologs. The successfully mapped DEGs were further subjected to a gene network analysis based on well-curated mammalian protein -protein interactions, followed by a canonical and toxicity pathway analysis. The pathways and network analysis were performed in order to link DEGs to specific and toxicological/biological functions. Isolated primary rainbow trout hepatocytes were exposed to 0.03-30nM ethynylestradiol for 48h. The cells were sampled and used for gene expression analysis. A total of 4 biological replicates were analyzed for each concentration, including solvent (DMSO) control.
Project description:The aim of present study is to identify and quantify proteins involved in the events of fertilization and early embryo development using a label-free protein quantification method in rainbow trout (Oncorhynchus mykiss) as an economically important fish species in aquaculture.
Project description:A rapid decline in temperature poses a major challenge for poikilothermic fish. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0 °C) and a control (5 °C) were compared in a microarray-based study.
Project description:To study short term (48h) hepatic transcriptional changes and identify potential modes of action in primary rainbow trout (Oncorhynchus mykiss) hepatocytes exposed to 0.03, 0.3, 3 and 30nM EE2. The transcriptional gene expression analysis involved a high density (60k) custom designed oligonucleotide salmonid microarray in combination with quantitative real-time polymerase chain reaction (qPCR). Differently expressed genes (DEGs) were obtained after application of a one-way analysis of variance (ANOVA) and Tukey posthoc test. Enrichment analysis was performed based on Gene Ontology (GO) to determine the biological roles of the DEGs. The obtained DEGs were further mapped against mammalian orthologs. The successfully mapped DEGs were further subjected to a gene network analysis based on well-curated mammalian protein -protein interactions, followed by a canonical and toxicity pathway analysis. The pathways and network analysis were performed in order to link DEGs to specific and toxicological/biological functions.
Project description:The hypoxia frequently occurs in natural aquatic systems and aquaculture environment due to the natural reasons and human factors such as extreme climate, high density farming, environmental pollution and global warming, which have gradually become a huge threat to aquatic ecosystem functions and aquatic organism survival, causing serious ecological damage and enormous economic losses. Rainbow trout (Oncorhynchus mykiss), as a hypoxia-sensitive fish species, is a good model to study hypoxia stress. The molecular regulation and oxidative stress of rainbow trout still remains unknown in response to environmental hypoxia and reoxygenation stress. In this study, the transcriptome and biochemical indexes of rainbow trout liver in response to hypoxia for different durations were analyzed to highlight the changes in the molecular regulation and oxidative stress.
Project description:The objective of this study was to identify and quantify proteomic profiles of intestine of rainbow trout (Oncorhynchus mykiss). Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between aquaria. The test groups were infected by immersion of Yersinia ruckeri CSF007-82 (biotype 1) and 7959-11 (biotype 2) strains. The control group was immersed similar with sterile broth medium. Fish were anaesthetized and sampled aseptically at different time points. Each intestine was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Intestinal mucosa was scraped with a sterile large scalpel blade. Intestinal samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:The objective of this study was to identify and quantify proteomic profiles of spleen of rainbow trout Oncorhynchus mykiss. Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between 9 aquaria, 18 fish per aquarium. The test groups were infected by immersion of Yersinia ruckeri strains: CSF007-82 (biotype 1) and 7959-11 (biotype 2). The control group was immersed similar with sterile broth medium. There were 3 aquaria per each group (CSF007-82-infected, 7959-11-infected and control). Nine fish from infected and control fish groups were anaesthetized with MS-222 at 3, 9 and 28 days post exposure and sampled aseptically. Each spleen was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Spleen samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:Sex steroids play a key role in triggering sec differentiation in fish and the use of exogenous hormone treatment leads to partial or complete sex reversal. This phenomenon has attracted attention since the discovery taht even low environmental doses of exogenous steroids can adversely affect gonad morphology (ovotestis development) and induce reproductive failure. Modern genomic-based technologies have enhanced opportunities to find mechanisms of action (MOA) and dentify biomarkers for the toxic action of a compound. The goal of this study are to improve the understanding of feminization in fish by analyzing gene expression patterns in the gonads of rainbow trout fry after a chronic exposure to several doses (0.01, 0.1, 1 and 10 ?g/L) of ethynylestradiol (EE2) and to offer target genes as potential biomarkers of ovotestis development. An all-male population of Rainbow trout fry was exposed during 76 days (from 60 to 136 days post-fertilization (dpf)) to five nominal concentrations of 17?-ethynylestradiol (0-solvent control-, 0.01, 0.1, 1 and 10 ?g EE2/L of water), using 3 tanks per condition. In total, 30 samples were analyzed independantly: 6 samples per concentration tested (two samples per tank, three tanks per concentration), each sample being a pool of 10 pairs of gonads.