Project description:Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56+/cytoCD3+ lymphocytes and constitutes a heterogeneous group of aggressive lymphomas prevalent in Asian and South American populations. Molecular pathogenesis of NKTCL remains largely elusive. Here we identified somatic mutations in RNA helicase gene DDX3X. Gene expression profiling revealed an association of DDX3X mutations with activation of NF-kB and MAPK pathways. Together, our work suggests the heterogeneity of gene mutational spectrum in NKTCL.
Project description:DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also commonly found in MYC-translocated diffuse large B cell lymphoma and reveal functional co-operation between mutant DDX3X and MYC. We show that DDX3X promotes translation of mRNAs encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells subsequently restore full protein synthetic capacity by ectopic expression of DDX3Y, a Y-chromosome homologue that is normally expressed exclusively in testis. These findings highlight the vulnerability of MYC-driven lymphoma to proteotoxic stress and identify an unexpected male-specific mechanism of carcinogenesis, namely the commandeering of a testis-specific Y-chromosome gene to drive full malignant transformation.
Project description:DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also commonly found in MYC-translocated diffuse large B cell lymphoma and reveal functional co-operation between mutant DDX3X and MYC. We show that DDX3X promotes translation of mRNAs encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells subsequently restore full protein synthetic capacity by ectopic expression of DDX3Y, a Y-chromosome homologue that is normally expressed exclusively in testis. These findings highlight the vulnerability of MYC-driven lymphoma to proteotoxic stress and identify an unexpected male-specific mechanism of carcinogenesis, namely the commandeering of a testis-specific Y-chromosome gene to drive full malignant transformation.
2021-09-01 | GSE144983 | GEO
Project description:LMP1 on Natural Killer/T Cell Lymphoma
Project description:Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. Such neoantigens have been implicated in response to immunotherapies including immune checkpoint blockade, yet their identification and validation remains challenging. Here we discover neoantigens in human mantle cell lymphomas using an integrated strategy for genomic and proteomic tumor antigen discovery that interrogates peptides presented within the tumor major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically identify neoantigen peptides in diagnostic tumor specimens from 17 patients and several cell lines. Remarkably, the discovered neoantigenic peptides were invariably derived from the lymphoma immunoglobulin (Ig) heavy or light chain variable regions. Although we could identify MHC presentation of private germline polymorphic alleles, no mutated peptides were recovered from non-Ig somatically mutated genes. The immunoglobulin variable region somatic mutations were almost exclusively presented by MHC-II. We found T-cells specific for an immunoglobulin-derived neoantigen in the blood of a patient using MHC-II tetramers, and these T-cell clones expanded in frequency following tumor vaccination. These results demonstrate that an integrative approach combining MHC isolation, peptide identification and exome sequencing is an effective platform to uncover tumor neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.
Project description:Cancer somatic mutations can generate neoantigens that distinguish malignant from normal cells. Such neoantigens have been implicated in response to immunotherapies including immune checkpoint blockade, yet their identification and validation remains challenging. Here we discover neoantigens in human mantle cell lymphomas using an integrated strategy for genomic and proteomic tumor antigen discovery that interrogates peptides presented within the tumor major histocompatibility complex (MHC) class I and class II molecules. We applied this approach to systematically identify neoantigen peptides in diagnostic tumor specimens from 17 patients. Remarkably, the 52 discovered neoantigenic peptides were invariably derived from the lymphoma immunoglobulin (Ig) heavy or light chain variable regions. Although we could identify MHC presentation of private germline polymorphic alleles, no mutated peptides were recovered from non-Ig somatically mutated genes. The immunoglobulin variable region somatic mutations were almost exclusively presented by MHC-II. We found T-cells specific for an immunoglobulin-derived neoantigen in the blood of a patient using MHC-II tetramers, and these T-cell clones expanded in frequency following tumor vaccination. These results demonstrate that an integrative approach combining MHC isolation, peptide identification and exome sequencing is an effective platform to uncover tumor neoantigens. Application of this strategy to human lymphoma implicates immunoglobulin neoantigens as targets for lymphoma immunotherapy.