Project description:We conducted field surveys to detect the population density of the most important invasive weed species and their associated virus vectoring aphids in crops grown under high input (HIF) vs low-input (LIF) field conditions, with and without fertilizers and pesticides. The most frequent invasive weed species were Stenactis annua, Erigeron canadensis and Solidago canadensis. These species were hosts predominantly for the aphids Brachycaudus helichrysi and Aulacorthum solani in both management systems. The 13% higher coverage of S. annua under LIF conditions resulted in a 30% higher B. helichrysi abundance and ~85% higher A. solani abundance compared with HIF conditions. To reveal virus infection in crop plants and invasive weeds high-throughput sequencing of small RNAs were carried out. Bioinformatics analysis of the results detected the presence of 16 important plant viruses, but not resulting strikingly different pattern under LIF and HIF. This could suggest that invasive weeds serves as a virus reservoir both under low and high input management systems. The lake of any management increases virus vector aphids abundances, their presence has a great impact on the viromes of the crops.
Project description:Many crop species have polyploid genomes that are unlikely to be sequenced to a high standard in the near future, representing a barrier to genomics-based breeding. As an exemplar, we sequenced the leaf transcriptome to analyse both sequence variation1 and transcript abundance across a mapping population of oilseed rape (Brassica napus), together with representatives of ancestors of the parents of the population. Twin SNP linkage maps were constructed, comprising 23,037 markers in all. These were used to analyse the genome for alignment to that of a related species, Arabidopsis thaliana, and to genome sequence assemblies of the progenitor species of B. napus. Methods were developed that enabled us to detect genome rearrangements and track inheritance of genomic segments, including the outcome of an inter-specific cross. This transformative advance, enabling economical high-resolution dissection of the genomes of most, if not all, crop species, will enable us to understand the genetic consequences of breeding and domestication, and will underpin the development of efficient predictive breeding strategies.
Project description:Japanese cedar (Cryptomeria japonica) is an allogamous coniferous species that relies on wind-mediated pollen and seed dispersal, and it is one of the most important forestry tree species in Japan. For accelerating breeding, we collected massive SNPs based on ESTs from several organs using NGS, and thus carried out QTL, GWAS and GS based on high-density linkage maps.
Project description:Japanese cedar (Cryptomeria japonica) is an allogamous coniferous species that relies on wind-mediated pollen and seed dispersal, and it is one of the most important forestry tree species in Japan. For accelerating breeding, we collected massive SNPs based on ESTs from several organs using NGS, and thus carried out QTL, GWAS and GS based on high-density linkage maps.
Project description:We analyzed the global defense responses in common tobacco against a begomovirus Tomato yellow leaf curl China virus, an invasive whitefly species Middle East-Asia Minor 1, and their co-infestation. The transcripts of defense related genes were both overlapping and divergent in response to virus and whitefly.
Project description:Most proteogenomic approaches for mapping single amino acid polymorphisms (SAPs) require construction of a sample-specific database containing protein variants predicted from the next-generation sequencing (NGS) data. We present a new strategy for direct SAP detection without relying on NGS data. Among the 348 putative SAP peptides identified in an industrial yeast strain, 85.6% of SAP sites were validated by genomic sequencing.
Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived retinal transcriptome profiling (RNA-seq) to microarray and quantitative reverse transcription polymerase chain reaction (qRT–PCR) methods and to evaluate protocols for optimal high-throughput data analysis Methods: The serum microvesicles of five acute ischemic stroke (AIS) and healthy controls was purified using Ribo™ Exosome Isolation Reagent (C10110-2, RIBOBIO, Guangzhou, China) and analyzed by flow cytometry and nanoparticle tracking analysis (NTA).The miRNA expression profiles of serum microvesicles of five acute ischemic stroke (AIS) and healthy controls were detected by RNA-seq using llumina HiSeqTM 2500. Results: Using an optimized data analysis workflow, 732 miRNA species were detected in total. The levels of 51 individual miRNA species were significantly different between AIS patients and healthy controls. Conclusions: Our study represents the first detailed analysis of miRNA expression profiles of serum microvesicles in AIS and healthy controls, generated by RNA-seq technology. The optimized data analysis workflows reported here should provide a framework for comparative investigations of expression profiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of miRNA content in serum microvesicles. We conclude that RNA-seq based non-coding RNA characterization would expedite genetic network analyses and permit the dissection of complex biologic functions.