Project description:Glioblastoma is an aggressive brain malignancy with a dismal prognosis. With emerging evidence that disproves the immune privileged environment in the brain, there is much interest in examining various immunotherapy strategies to treat these incurable cancers. Unfortunately, to date, clinical studies investigating immunotherapy regimens have not provided much evidence of efficacy, leading to questions about the suitability of immunotherapy strategies for these tumors. Inadequate inherent populations of lymphocytes in tumor (TILs) and limited trafficking of systemic circulating T cells into the central nervous system (CNS) likely contribute to the poor response to immunotherapy treatment for primary CNS cancers. This paucity of TILs is in concert with the finding of epigenetic silencing of genes that promote immune cell movement (chemotaxis) to the tumor. In this study we evaluated the ability of GSK126, a blood-brain barrier permeable small molecule inhibitor of EZH2, to reverse the epigenetic silencing of chemokines like CXCL9 and CXCL10. When combined with anti-PD-1 treatment, these IFN driven chemokines promote T cell infiltration, resulting in decreased tumor growth and enhanced survival in immunocompetent murine sub-cutaneous and intracranial tumor syngeneic models of GBM. Examination of the tumor micro-environment revealed that the decrease in tumor growth in the mice treated with the drug combination was accompanied by increased tumor CD8 T cell infiltration along with higher IFN expression. Additionally, a significant increase in CXCR3+ T cells in the draining lymph nodes was also found. Taken together, our data suggests that in glioblastoma, epigenetic modulation using GSK126 could improve current immunotherapy strategies by reversing the epigenetic changes that enable immune cell evasion leading to enhanced immune cell trafficking to the tumor.
Project description:The paper describes a model of immunity to melanoma.
Created by COPASI 4.25 (Build 207)
This model is described in the article:
Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma
Raluca Eftimie, Jonathan L. Bramson, David J.D. Earn
Journal of Theoretical Biology 265 (2010) 467–480
Abstract:
Recent experiments indicate that CD4+ Th2 cells can reject skin tumors in mice, while CD4+ Th1 cells cannot (Mattes et al., 2003; Zhang et al., 2009). These results are surprising because CD4+ Th1 cells are typically considered to be capable of tumor rejection. We used mathematical models to investigate this unexpected outcome. We found that neither CD4+ Th1 nor CD4+ Th2 cells could eliminate the cancer cells when acting alone, but that tumor elimination could be induced by recruitment of eosinophils by the Th2 cells. These recruited eosinophils had unexpected indirect effects on the decay rate of type 2 cytokines and the rate at which Th2 cells are inactivated through interactions with cancer cells. Strikingly, the presence of eosinophils impacted tumor growth more significantly than the release of tumor-suppressing cytokines such as IFN-g and TNF-a. Our simulations suggest that novel strategies to enhance eosinophil recruitment into skin tumors may improve cancer immunotherapies.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models .
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide.
Please refer to CC0 Public Domain Dedication for more information.
Project description:The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered tumor-promoting. In contrast, the exact nature of protective antitumor immunity remains obscure. In this study, we have quantified locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumor-specific CD4+ T cells was consistently associated with elevated local levels of both proinflammatory (IL-1aplha, IL-1beta, and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-alpha, IL-2, IL-12). Cancer eradication was achieved by a collaboration between tumor-specific Th1 cells and tumor-infiltrating, antigen-presenting macrophages. Th1 cells induced secretion of IL-1? and IL-6 by macrophages. Th1-derived interferon-? was shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumor-specific Th1 cells, may prevent rather than promote cancer. Tumoricidal macrophages were isolated from Idiotype-specific TCR-transgenic SCID mice injected with MOPC315-containing Matrigel. Control macrophages were obtained from TCR-transgenic SCID mice injected with Matrigel containing antigen-loss MOPC315.
Project description:Tumor-induced immunosuppression remains a major challenge for immunotherapy of cancer patients. To further elucidate why an allogeneic gene-modified (Interleukin-7(IL-7)/CD80 co-transfected) renal cell cancer vaccine failed to induce clinically relevant TH1-polarized immune responses, peripheral blood mononuclear cells (PBMCs) from enrolled study patients were analyzed by gene expression profiling (GEP) both prior and after vaccination. At baseline before vaccination, a profound downregulation of gene signatures associated with antigen presentation, immune response/T cells, cytokines/chemokines and signaling/transcription factors was observed in renal cell cancer patients as compared to healthy controls. Vaccination led to a partial reversion of preexisting immunosuppression, however, GEP indicated that an appropriate TH1 polarization could not be achieved. Most interestingly, our results suggest that the nuclear factor kappa B (NF-M-NM-:B) signaling pathway might be involved in the impairment of immunological responsiveness and the observed TH2 deviation. In summary, our data suggest that GEP might be a powerful tool for the prediction of immunosuppression and the monitoring of immune responses within immunotherapy trials. Gene expression was profiled using Affymetrix Human Gene v1.1 ST microarrays in the following settings: 9 RCC patients were profiled before and after vaccination (pairs of measurements) and additionally 9 healthy control samples were profiled.
Project description:In a syngeneic mouse model of melanoma, we found that tumor size was inversely correlated with response to immunotherapy. Large tumors had higher levels of IL-1α, Th2 cytokines, granulocytic myeloid-derived suppressor cells (GMDSCs), and regulatory T cells but lower levels of IL-12, Th1 cytokines, and activated CD4+ and CD8+ T cells. Blocking IL-1 signaling decreased GMDSCs and their associated PD-L1 expression in the tumor microenvironment, and enhanced tumor-specific immunity.
Project description:The immune system can both promote and suppress cancer. Chronic inflammation and proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered tumor-promoting. In contrast, the exact nature of protective antitumor immunity remains obscure. In this study, we have quantified locally secreted cytokines during primary immune responses against myeloma and B-cell lymphoma in mice. Strikingly, successful cancer immunosurveillance mediated by tumor-specific CD4+ T cells was consistently associated with elevated local levels of both proinflammatory (IL-1aplha, IL-1beta, and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-alpha, IL-2, IL-12). Cancer eradication was achieved by a collaboration between tumor-specific Th1 cells and tumor-infiltrating, antigen-presenting macrophages. Th1 cells induced secretion of IL-1? and IL-6 by macrophages. Th1-derived interferon-? was shown to render macrophages directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic chemokines CXCL9/MIG and CXCL10/IP-10. Thus, inflammation, when driven by tumor-specific Th1 cells, may prevent rather than promote cancer.