Project description:KSHV is a principal causative agent of Kaposi's Sarcoma (KS). Despite this knowledge about the close relationship between sphingolipid metablism and solid tumors development, the role of sphingolipid metablism in KSHV-related malignancies remains mostly unclear. We report that targeting sphingosine kinase 2 (SphK2) by a selective inhibitor, ABC294640, significantly induces KSHV+ TIVE-LTC autophagic death. By using microarray analysis, we have identified the global gene profile affected by ABC294640 within KSHV+ TIVE-LTC and several novel “druggable” candidates closely related to cancer cell survival/growth. Finally, we found that targeting TIVE-LTC by ABC294640 effectively suppressed KSHV tumorigenicity by using a KS-like nude mice model.
Project description:The Kaposiâs Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposiâs Sarcoma (KS), which preferentially arise in immunocompromised patients but lack of effective therapeutic options. We have previously shown that KSHV or viral protein LANA can upregulate the glycoprotein CD147 (Emmprin) to induce primary endothelial cell invasiveness, which also requires PI3K/Akt and MAPK activation of VEGF production. In the current study, we first time identify the global network controlled by CD147 in KSHV-infected endothelial cells using Illumina microarray analysis. Among these downstream genes, ADAMTS1 and 9, two specific metalloproteases are strongly expressed in AIDS-KS tissues and contributed to KSHV-infected cell invasiveness through regulation of related cytokines production and respective receptors expression. By using a nude mice KS-like model, we found that targeting CD147 and downstream ADAMTSs proteins significantly suppressed KSHV-related tumorigenesis in vivo, which is potentially through impairing extracellular matrix (ECM) formation in tumor microenvironment. Taken together, we think that targeting CD147 and related proteins may represent a promising therapeutic strategy against KSHV-related malignancies. HUVEC cells were infected by KSHV or transduced by a CD147 recombinant adenoviral vector and the gene expression signature was compared to respective controls
Project description:Kaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions. The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV-infected spindle cells, most commonly the lymphatic endothelial and blood vessel endothelial cells (LEC and BEC), plus surrounding stroma. The KSHV virus expresses multiple MAF-downregulating microRNA. Here we test the effects of MAF silencing by siRNA in LEC cells using Affymetrix hgu133plus2 chips. Experiment Overall Design: There are n=3 of 1. LEC control cells transfected with a non-targeting siRNA, 2. LEC transfected with a MAF-targeting siRNA
Project description:The Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of several human cancers, including Kaposi’s Sarcoma (KS), which preferentially arise in immunocompromised patients but lack of effective therapeutic options. We have previously shown that KSHV or viral protein LANA can upregulate the glycoprotein CD147 (Emmprin) to induce primary endothelial cell invasiveness, which also requires PI3K/Akt and MAPK activation of VEGF production. In the current study, we first time identify the global network controlled by CD147 in KSHV-infected endothelial cells using Illumina microarray analysis. Among these downstream genes, ADAMTS1 and 9, two specific metalloproteases are strongly expressed in AIDS-KS tissues and contributed to KSHV-infected cell invasiveness through regulation of related cytokines production and respective receptors expression. By using a nude mice KS-like model, we found that targeting CD147 and downstream ADAMTSs proteins significantly suppressed KSHV-related tumorigenesis in vivo, which is potentially through impairing extracellular matrix (ECM) formation in tumor microenvironment. Taken together, we think that targeting CD147 and related proteins may represent a promising therapeutic strategy against KSHV-related malignancies.
Project description:Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and two human lymphoproliferative diseases: primary effusion lymphoma and AIDS-related multicentric Castleman's disease. KSHV latency-associated nuclear antigen (LANA) is expressed in KSHV-infected cancer cells and is responsible for maintaining viral genomes in infected cells. Thus, LANA is an attractive target for therapeutic intervention for KSHV-associated diseases. Here, we devised a gene therapy vector using the adeno-associated virus (AAV), which capitalizes the LANA's function to tether terminal repeat (TR) containing circular genome in latently infected cells and the TR's enhancer function for KSHV inducible gene promoters. By including two TR copies with a lytic inducible gene promoter (TR2-Orip), we generated an AAV vector, which expresses an engineered thymidine kinase (TK) selectively in KSHV-infected cells. Ganciclovir (GCV), an anti-herpesvirus drug, effectively eradicated multiple KSHV-infected cells that include iPSC derived epithelial colony forming cells, but not non-KSHV-infected counterparts in the presence of AAV8-TR2-Orip-TK. In addition, AAV8-TR2-Orip-TK prevents KSHV virion production from reactivated cells, hence spreading KSHV infections from reactivated cells. Anti-cancer drugs, known to reactivate KSHV, stimulated TK expression from the vector and, therefore, synergized with AAV8 TR2-Orip-TK to induce KSHV-infected cancer cell death. Finally, the AAV8-TR2-Orip-TK with GCV completely diminished KSHV-infected cancer cells in the xenograft tumor model. Our new cancer gene therapy should augment the current clinical protocol for KS.
Project description:Kaposi sarcoma is the most common cancer in AIDS patients and is typified by red skin lesions.The disease is caused by the KSHV virus (HHV8) and is recognisable by its distinctive red skin lesions. The lesions are KSHV infected spindle cells expressing markers of the lymphatic endothelial and blood vessel endothelial cells as well as other cell types. The effects of KSHV infection of lymphatic endothelial cells (LEC) cultured in 3D matrix for three days were assayed using Affymetrix hgu133plus2 chips. There are n=3 of 1. control LEC spheroids (LEC), 2. KSHV infected LEC spheroids (K-LEC)
Project description:An sgRNA sub-pool derived from hits and controls in a whole genome screen (PMID: 33122441) was used to investigate genes which are essential during latent KSHV infection of human endothelial cells. The initial pool of library transduced cells was used to confirm efficient transduction of the library and effective selection against sgRNAs targeting generally essential genes over the course of the 8 day experiment. Two replicate experiments were done and comparisons between mock infected and KSHV infected cells was used to identify KSHV infection-specific essential genes.