Project description:Background & Aims: The complex interactions between diet and the microbiota that influence mucosal inflammation and inflammatory bowel disease are poorly understood. Experimental colitis models provide the opportunity to control and systematically perturb diet and the microbiota in parallel to quantify the contributions between multiple dietary ingredients and the microbiota on host physiology and colitis. Methods: To examine the interplay of diet and the gut microbiota on host health and colitis, we fed over 40 different diets with varied macronutrient sources and concentrations to specific pathogen free or germ free mice either in the context of healthy, unchallenged animals or dextran sodium sulfate colitis model. Results: Diet influenced physiology in both health and colitis across all models, with the concentration of protein and psyllium fiber having the most profound effects. Increasing dietary protein elevated gut microbial density and worsened DSS colitis severity. Depleting gut microbial density by using germ-free animals or antibiotics negated the effect of a high protein diet. Psyllium fiber influenced host physiology and attenuated colitis severity through microbiota-dependent and microbiota-independent mechanisms. Combinatorial perturbations to dietary protein and psyllium fiber in parallel explain most variation in gut microbial density, intestinal permeability, and DSS colitis severity, and changes in one ingredient can be offset by changes in the other. Conclusions: Our results demonstrate the importance of examining complex mixtures of nutrients to understand the role of diet in intestinal inflammation. Keywords: IBD; Diet; Microbiota; Mouse Models; Systems Biology
Project description:The mechanisms responsible for weight loss-induced improvement in insulin sensitivity are partially understood. Greater insight can now be achieved through deep phenotyping and data integration. Here, we used an integrative approach to investigate associations between changes in insulin sensitivity and variations in lifestyle factors (diet and physical activity), subcutaneous adipose tissue (sAT) gene expression, metabolomics in serum, urine and feces, and gut microbiota composition after a 6-week calorie restriction period in overweight and obese adults
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:Changes in microbiome composition have been associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infused gut organ cultures with longitudinal microbiota samples collected from therapy-naïve irritable bowel syndrome (IBS) patients under low-FODMAP (fermentable Oligo-, Di-, Mono-saccharides and Polyols) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene-sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a unique pathway discovery approach for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of low-FODMAP diet and reinforce the potential feasibility of microbiome based-therapies in IBS.
Project description:Changes in microbiome composition have been associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infused gut organ cultures with longitudinal microbiota samples collected from therapy-naïve irritable bowel syndrome (IBS) patients under low-FODMAP (fermentable Oligo-, Di-, Mono-saccharides and Polyols) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene-sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a unique pathway discovery approach for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of low-FODMAP diet and reinforce the potential feasibility of microbiome based-therapies in IBS.
Project description:Changes in microbiome composition have been associated with a wide array of human diseases, turning the human microbiota into an attractive target for therapeutic intervention. Yet clinical translation of these findings requires the establishment of causative connections between specific microbial taxa and their functional impact on host tissues. Here, we infused gut organ cultures with longitudinal microbiota samples collected from therapy-naïve irritable bowel syndrome (IBS) patients under low-FODMAP (fermentable Oligo-, Di-, Mono-saccharides and Polyols) diet. We show that post-diet microbiota regulates intestinal expression of inflammatory and neuro-muscular gene-sets. Specifically, we identify Bifidobacterium adolescentis as a diet-sensitive pathobiont that alters tight junction integrity and disrupts gut barrier functions. Collectively, we present a unique pathway discovery approach for mechanistic dissection and identification of functional diet-host-microbiota modules. Our data support the hypothesis that the gut microbiota mediates the beneficial effects of low-FODMAP diet and reinforce the potential feasibility of microbiome based-therapies in IBS.
Project description:Several studies have established a link between high-salt diet, inflammation, and hypertension. Vitamin D supplementation has shown anti-inflammatory effects in many diseases; gut microbiota is also associated with a wide variety of cardiovascular diseases, but potential role of vitamin D and gut microbiota in high-salt diet-induced hypertension remains unclear. Therefore, we used rats with hypertension induced by a high-salt diet as the research object and analyzed the transcriptome of their tissues (kidney and colon) and gut microbiome to conduct an overall analysis of the gut–kidney axis. We aimed to confirm the effects of high salt and calcitriol on the gut–kidney immune system and the composition of the intestinal flora. We demonstrate that consumption of a high-salt diet results in hypertension and inflammation in the colon and kidney and alteration of gut microbiota composition and function. High-salt diet-induced hypertension was found to be associated with seven microbial taxa and mainly associated with reduced production of the protective short-chain fatty acid butyrate. Calcitriol can reduce colon and kidney inflammation, and there are gene expression changes consistent with restored intestinal barrier function. The protective effect of calcitriol may be mediated indirectly by immunological properties. Additionally, the molecular pathways of the gut microbiota-mediated BP regulation may be related to circadian rhythm signals, which needs to be further investigated. An innovative association analysis of the microbiota may be a key strategy to understanding the association between gene patterns and host.
Project description:Increasing the consumption of dietary fibre has been proposed to alleviate the progression of non-communicable diseases such as obesity, type 2 diabetes and cardiovascular disease, yet the effect of dietary fibre on host physiology remains unclear. In this study, we performed a multiple diet feeding study in C57BL/6J mice to compare high fat and high fat modified with dietary fibre diets on host physiology and gut homeostasis by combining proteomic, metagenomic, metabolomic and glycomic techniques with correlation network analysis. We observed significant changes in physiology, liver proteome, gut microbiota and SCFA production in response to high fat diet. Dietary fibre modification did not reverse these changes but was associated with specific changes in the gut microbiota, liver proteome, SCFA production and colonic mucin glycosylation. Furthermore, correlation network analysis identified gut bacterial-glycan associations.
Project description:The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess changes to both bacterial community structure and transcriptional activity in a mouse model of colitis. Gene families involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase, were transcriptionally up-regulated in colitis, implicating a role for increased oxygen tension in gut microbiota modulation. Transcriptional profiling of the host gut tissue and host RNA in the gut lumen revealed a marked increase in the transcription of genes with an activated macrophage and granulocyte signature, suggesting the involvement of these cell types in influencing microbial gene expression. Down-regulation of host glycosylation genes further supports a role for inflammation-driven changes to the gut niche that may impact the microbiome. We propose that members of the bacterial community react to inflammation-associated increased oxygen tension by inducing genes involved in oxidative stress resistance. Furthermore, correlated transcriptional responses between host glycosylation and bacterial glycan utilisation support a role for altered usage of host-derived carbohydrates in colitis. Complementary transcription profiling data from the mouse hosts have also been deposited at ArrayExpress under accession number E-MTAB-3590 ( http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3590/ ).