Project description:Background: Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy) is induced, these cells are chemosensitive and will not recover following chemotherapy treatment. In contrast, when cancer cells exhibit only autophagy and limited Type II cell death, they are chemoresistant and recover following drug withdrawal. Methods: MicroRNA (miRNA) expression profiling of an oesophageal cancer cell line panel was used to identify miRNAs that were important in the regulation of apoptosis and autophagy. The effects of miRNA overexpression on cell death mechanisms and recovery were assessed in the chemoresistant (autophagy inducing) KYSE450 oesophageal cancer cells. Results: MiR-193b was the most differentially expressed miRNA between the chemosensitive and chemoresistant cell lines with higher expression in chemosensitive apoptosis inducing cell lines. Colony formation assays showed that overexpression of miR-193b significantly impedes the ability of KYSE450 cells to recover following 5-fluorouracil (5-FU) treatment. The critical mRNA targets of miR-193b are unknown but target prediction and siRNA data analysis suggest that it may mediate some of its effects through stathmin 1 regulation. Apoptosis was not involved in the enhanced cytotoxicity. Overexpression of miR- 193b in these cells induced autophagic flux and non-apoptotic cell death. Conclusion: These results highlight the importance of miR-193b in determining oesophageal cancer cell viability and demonstrate an enhancement of chemotoxicity that is independent of apoptosis induction.
Project description:Background: The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on the miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma. 8 benign nevi and 8 metastatic melanoma tissue samples were profiled by Agilent MicroRNA Microarray (V1.5).
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma.
Project description:Cutaneous melanoma is an increasingly common form of skin cancer. The molecular mechanisms regulating melanoma progression are not completely understood. We speculated that specific miRNAs may be involved in melanoma development. We compared the miRNA expression profiles of benign nevi and metastatic melanomas. Unsupervised hierarchical clustering demonstrated a distinct miRNA expression pattern in metastatic melanomas compared to nevi. We identified miRNAs that were differentially expressed in melanoma. Notably, miR-193b was significantly down-regulated in the melanoma tissue examined. Using functional studies we demonstrated that over-expression of miR-193b significantly reduced melanoma cell proliferation, and arrested cell at G1 phase. Further gene expression analysis revealed that miR-193b regulated targets involved in cell cycle. Cyclin D1 was down-regulated by miR-193b at both the mRNA and protein level. This is the first study to show that the miR-193b may reduce cell proliferation by directly repressing cyclin D1. Overall, our study suggests that miRNAs are dysregulated in metastatic melanoma, and that miR-193b may play an important role in melanoma.
Project description:Phenotypically, there is a heterogeneous response of cancer cells to chemotherapy or targeted therapy. While therapeutically much attention is focused on cell death, there is growing evidence suggesting that a subpopulation of cancer cells undergo therapy-induced senescence. Depending on the therapy, dose and timing, senescence may be a dominant phenotype over cell death. An integrated FACS approach identified two types of therapy-induced senescence in human melanoma cells, irreversible senescence induced by Aurora kinase inhibition vs. transient senescence induced by B-RAF kinase inhibition. Autophagy and ER stress response precede and are required for therapy-induced senescence in cancer cells, mirroring their functions in normal cells undergoing oncogene-induced senescence. Importantly, autophagy serves a survival pathway for senescent cancer cells. Antagonizing autophagy converts therapy-induced senescence into cell death but paradoxically promotes cell proliferation or quiescence. Our work calls for a rationale-based design of combination therapy for cancer treatment that should lead to a greater synergy. There are three or four replicates per treatment per time point.
Project description:Phenotypically, there is a heterogeneous response of cancer cells to chemotherapy or targeted therapy. While therapeutically much attention is focused on cell death, there is growing evidence suggesting that a subpopulation of cancer cells undergo therapy-induced senescence. Depending on the therapy, dose and timing, senescence may be a dominant phenotype over cell death. An integrated FACS approach identified two types of therapy-induced senescence in human melanoma cells, irreversible senescence induced by Aurora kinase inhibition vs. transient senescence induced by B-RAF kinase inhibition. Autophagy and ER stress response precede and are required for therapy-induced senescence in cancer cells, mirroring their functions in normal cells undergoing oncogene-induced senescence. Importantly, autophagy serves a survival pathway for senescent cancer cells. Antagonizing autophagy converts therapy-induced senescence into cell death but paradoxically promotes cell proliferation or quiescence. Our work calls for a rationale-based design of combination therapy for cancer treatment that should lead to a greater synergy. There are three or four replicates per treatment per time point.
Project description:MicroRNAs (miRNAs) have important roles in gene regulation. Dysregulation of miRNAs has been associated with tumorigenesis. Recent studies suggest miR-193b is a tumor suppressor gene. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 (CCND1) in melanoma. Now we demonstrate that miR-193b regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. miRNA microarray profiling revealed the miR-193b level in malignant melanomas was significantly downregulated compared to benign nevi, while a tissue microarray demonstrated overexpression of Mcl-1 in malignant melanoma. The Mcl-1 expressions were inversely correlated with the miR-193b levels in melanoma tissue samples, suggesting a potential regulatory role of miR-193b. Overexpression of miR-193b repressed Mcl-1 in melanoma cell lines. It is well known that Mcl-1 knockdown confers cell sensitivity to ABT-737, a small molecular inhibitor of Bcl-2, Bcl-XL and Bcl-w. We found miR-193b, through repressing Mcl-1 expression, could also sensitize melanoma cells that were refractory to ABT-737. Furthermore, miR-193b directly regulates Mcl-1 by targeting the 3’ untranslated region (3’UTR) of Mcl-1 mRNA. Interestingly, miR-193b may recognize sequences on the 3’UTR that do not base pair with its seed region. In conclusion, our study suggests the downregulation of miR-193b could be an early event during melanoma progression, and demonstrates miR-193b directly regulates Mcl-1 by targeting both seed and seedless sequences of the 3’ UTR.
Project description:MicroRNAs (miRNAs) have important roles in gene regulation. Dysregulation of miRNAs has been associated with tumorigenesis. Recent studies suggest miR-193b is a tumor suppressor gene. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 (CCND1) in melanoma. Now we demonstrate that miR-193b regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells. miRNA microarray profiling revealed the miR-193b level in malignant melanomas was significantly downregulated compared to benign nevi, while a tissue microarray demonstrated overexpression of Mcl-1 in malignant melanoma. The Mcl-1 expressions were inversely correlated with the miR-193b levels in melanoma tissue samples, suggesting a potential regulatory role of miR-193b. Overexpression of miR-193b repressed Mcl-1 in melanoma cell lines. It is well known that Mcl-1 knockdown confers cell sensitivity to ABT-737, a small molecular inhibitor of Bcl-2, Bcl-XL and Bcl-w. We found miR-193b, through repressing Mcl-1 expression, could also sensitize melanoma cells that were refractory to ABT-737. Furthermore, miR-193b directly regulates Mcl-1 by targeting the 3â untranslated region (3âUTR) of Mcl-1 mRNA. Interestingly, miR-193b may recognize sequences on the 3âUTR that do not base pair with its seed region. In conclusion, our study suggests the downregulation of miR-193b could be an early event during melanoma progression, and demonstrates miR-193b directly regulates Mcl-1 by targeting both seed and seedless sequences of the 3â UTR. 15 primary melanoma samples, 8 metastatic melanomas and 8 benign nevi samples were profiled on Agilent miRNA array platform