Project description:The aging of bone marrow stromal cells (BMSCs) lead to decreased ability to maintain hematopoiesis, however, effects of aging on BMSC-derived exosomes in bone marrow microenvironment remain unclear. The aim of this study is therefore to determine the age-related change of BMSC-derived exosomal miRNAs.
Project description:Bone marrow stromal cells (BMSCs) and their exosomes are a promising area of cancer therapy. Multiple myeloma (MM) is refractory hematologic malignancy. Bone marrow stromal cells (BMSCs) interact with MM cells in the bone marrow (BM), and also create a permissive microenvironment for MM cell growth and survival. Recent evidence indicated that exosome-mediated MM cell-BMSC communication plays an important role in the MM microenvironment. In this study, we investigated the biological property of the exosomes and exosomal miRNAs derived from BMSCs, aiming to establish the emerging strategies to target MM microenvironment to prevent tumor growth and spread.
Project description:Bone marrow stromal cells (BMSCs) and their exosomes are a promising area of cancer therapy. Multiple myeloma (MM) is a refractory hematologic malignancy. Bone marrow stromal cells (BMSCs) interact with MM cells in the bone marrow (BM), and also create a permissive microenvironment for MM cell growth and survival. Recent evidence indicated that exosome-mediated MM cell-BMSC communication plays an important role in the MM microenvironment. In this study, we investigated the biological property of the exosomes and exosomal miRNAs derived from BMSCs, aiming to establish the emerging strategies to target MM microenvironment to prevent tumor growth and spread.
Project description:Bone marrow stromal cells (BMSCs) and their exosomes are a promising area of cancer therapy. Multiple myeloma (MM) is refractory hematologic malignancy. Bone marrow stromal cells (BMSCs) interact with MM cells in the bone marrow (BM), and also create a permissive microenvironment for MM cell growth and survival. Recent evidence indicated that exosome-mediated MM cell-BMSC communication plays an important role in the MM microenvironment. In this study, we investigated the biological property of the exosomes and exosomal miRNAs derived from BMSCs, aiming to establish the emerging strategies to target MM microenvironment to prevent tumor growth and spread.
Project description:Over the last two decades, mounting evidence has demonstrated the aberrant expression of miRNAs in different human malignancies, including ovarian carcinomas. In this study, we found that miR-141 were secreted by ovarian cancer cells and transferred to the stromal cells by exosomal pathway. To clarify the mechanisms that miR-141 remodeling stromal fibroblast and reprogramming the relevant signals, miR-141 were overexpressed in WPMY-1 and their respective scrambled control were send for proteomic analysis.
Project description:The aging of bone marrow stromal cells (BMSCs) lead to decreased ability to maintain hematopoiesis, however, effects of aging on BMSC-derived exosomes in bone marrow microenvironment remain unclear. The aim of this study is therefore to determine the age-related change of BMSC-derived exosomal miRNAs. Human BMSCs of young (yBMSC s, age of donors: 19 and 20 years) and elderly (eBMSC s, age of donors: 68 and 72 years) donors were purchased from Lonza. BM samples were obtained from MM patients (age of donors: 62 and 77 years) in accordance with the Declaration of Helsinki and using protocols approved by the research Ethics Committee of Tokyo Medical University (IRB No. 2648), and BMSCs derived from MM patients (mmBMSCs) were isolated using the classical plastic adhesion method. The exosomes from culture medium of BM-MSCs were isolated by Total Exosome Isolation Reagent (Invitrogen). Exosomal miRNA profiling was done using a TaqMan low-density array (ABI), and Studentâ??s t-test was used to determine statistical significance for comparisons between young and old groups using R software.