Project description:Genomic DNA from five strains, Aspergillus fumigatus Af71, Aspergillus fumigatus Af294, Aspergillus clavatus, Neosartorya fenneliae, and Neosartorya fischeri, were co-hybridized with that of Aspergillus fumigatus Af293 and compared.
Project description:The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suit of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to experimentally established clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins up-regulated in ISS isolates were involved in oxidative stress response, and carbohydrate and secondary metabolism. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment. Lastly, an attempt was made to elucidate plausible causes of the enhanced virulence of both ISS-isolated A. fumigatus strains.
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the small RNA repertoire of A. fumigatus in conidia and mycelium grown for 24 or 48 hours in liquid culture.
Project description:Aspergillus fumigatus is an important human pathogen and a leading fungal killer. This study aimed to determine the tRNA fragment and tRNA half repertoire of A. fumigatus in wild-type conidia and mycelium grown for 24 or 48 hours in liquid culture.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours
Project description:This SuperSeries is composed of the following subset Series: GSE24983: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_WT-GC] GSE24984: Response of A549 cells treated with Aspergillus fumigatus [WT-GC_vs_PrtT-GC] GSE24985: Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_PrtT-CF] Refer to individual Series
Project description:To investigate the influence of Aspergillus fumigatus on iron regulation in macrophages, we obtained macrophages in culture from human derived monocytes and co-cultured the monocyte-derived macrophages with Aspergillus conidia at a 1:1 ratio. We collected samples at 0, 2, 4, 6 and 8 hours and extracted RNA. We then performed gene expression profiling analysis using data obtained from RNA-seq of control macrophages and macrophage co-cultured with Aspergillus fumigatus at five time points.
Project description:Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by genomic approaches. Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections including invasive aspergillosis. We aimed to understand molecular targets of AMB in Aspergillus fumigatus (Afu) by microarray and proteomic methods. Keywords: Aspergillus fumigatus treated with amphotericin B for 24 hours Experiment was performed in dye swap manner from two different biological replicates
Project description:We examined the antifungal activity of artemisinin against Aspergillus fumigatus (A. fumigatus), a pathogenic filamentous fungus responsible for allergic and invasive aspergillosis in humans and analyzed transcript profiles of the fungus on exposure to Artemisinin. A. fumigatus spores were cultured for 48 h and then treated with artemisinin (at MIC50 concentration) or solvent control (DMSO) for 3 h to study its transcriptomic profiles.