Project description:Hematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros refering to the tissues around the hemogenic aorta. Hematopoiesis depends on the Notch pathway and the identification of Notch-targets is important for the understanding of blood origin.
Project description:Hematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros and refers to the tissues around the hemogenic aorta. Cells that emerge from the endothelium and show hematopoietic traits can be distinguished by the expression of the c-kit receptor and finally acquire the CD45 marker.
Project description:Hematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here, we examined the hemogenic activity of the developing endocardium. Mouse heart explants generated myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arose from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and was transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, were expressed in and required for the hemogenic activity of the endocardium. Together, these data suggest that a subset of endocardial and yolk sac endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors. Two independent biological duplicates of freshly isolated mouse tissues (caudal half, heart tube, yolk sac) were sorted for CD31+/CD41-/CD45- cells.
Project description:Hematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros and refers to the tissues around the hemogenic aorta. Cells that emerge from the endothelium and show hematopoietic traits can be distinguished by the expression of the c-kit receptor and finally acquire the CD45 marker. AGM regions were obtained from E11.5 embryos by dissection and digested with 0.1% collagenase. Cells were stained with anti-CD31, anti-ckit, anti-CD45 and anti-Ter119 antibodies. Sorting of the CD31+CD45-Ter119- population was performed, and cells were separated into c-kit+ and c-kit-. 3 replicates each of c-kit+ and c-kit- cells.
Project description:We profile the transcriptional landscape of mouse fetal placenta and identify four distinct types of haematopoietic stem/progenitor cells (HSPCs) during mid-gestation using single-cell RNA sequencing. We experimentally validate and uncover that a subpopulation of placental endothelial cells exhibits hemogenic endothelial (HE) potential and shares transcriptional features with HE cells in the aorta-gonad-mesonephros (AGM) region.
Project description:The hematopoietic stem cells (HSCs) arise from hemogenic endothelial cells (HECs) in the para-aortic splanchnopleure (P-Sp)/aorta-gonad-mesonephros (AGM) region of mouse embryos. HECs differentiate into HSC precursors and blood progenitors and form intra-aortic hematopoietic clusters (IAHCs) in the aorta. To identify HECs in distinction from endothelial cells, we performed single-cell RNA-seq analysis of cells isolated from the dorsal aorta and its surrounding tissues at E9.5. We found the population of HECs in the arterial endothelial cell cluster. Therefore, our data might elucidate the mechanism of HEC development.
Project description:Hematopoietic Stem Cells (HSC) are originated during embryonic development from endothelial-like cells located in the ventral side of the dorsal aorta around day E10-12 of murine development. This region is called AGM for Aorta/Gonad/Mesonephros refering to the tissues around the hemogenic aorta. Hematopoiesis depends on the Notch pathway and the identification of Notch-targets is important for the understanding of blood origin. Hematopoietic Stem Cells (HSCs) specification occurs in the embryonic aorta and requires Notch activation, however which are the elements regulated by Notch that control this process are mainly unknown. Here, we took a genome-wide approach to identify putative direct Notch targets by precipitating the chromatin that binds to the Notch partner RBPj in the Aorta-Gonad-Mesonephros (AGM) tissue from E11.5 mouse embryos. This assay revealed 701 gene promoter regions as candidates to be regulated by Notch in the AGM. Chromatin was obtained from a pool of 40 dissected AGMs at E11.5. Chromatin immunoprecipitation (ChIP) was performed as previously described (Aguilera et al, PNAS 2004) with minor modifications. In brief, cross-linked chromatin was sonicated for 10 minutes, medium-power, 0.5-interval; with a Bioruptor (Diagenode) and precipitated with anti-RBPJ (Chu and Bresnick, 2004). After crosslinkage reversal, DNA was used as a template for PCR or for array hybridization. Mouse promoter chip on chip microarray SET (Agilent) was used to identify RBPj targets. It covers 70,000 best identified gene regions with a-5.5 kb to + 2.5 kb range, and has on average 25 probes per gene with an average probe to probe distance of 200 bp. The ChIP-on-chip was performed with dye swaps and one IgG control was brought along. Enrichment analysis was done by comparing the precipitation normalized dye swap signal with input control signal.
Project description:Hematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial, and hematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a hemogenic organ akin to the dorsal aorta. Here, we examined the hemogenic activity of the developing endocardium. Mouse heart explants generated myeloid and erythroid colonies in the absence of circulation. Hemogenic activity arose from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and was transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, were expressed in and required for the hemogenic activity of the endocardium. Together, these data suggest that a subset of endocardial and yolk sac endothelial cells expressing cardiac markers serve as a de novo source for transient definitive hematopoietic progenitors.