Project description:Male C57Bl/6J mice were fed 45%kcal fat diet (HF) or regular rodent chow (NC) from 4 weeks to 16 weeks of age. Gene expression was compared between RNA obtained from pancreatic islets of HF fed mice and NC mice.
Project description:Male C57Bl/6J mice were fed 45%kcal fat diet (HF) or regular rodent chow (NC) from 4 weeks to 16 weeks of age. Gene expression was compared between RNA obtained from pancreatic islets of HF fed mice and NC mice. RNA samples from 4 NC group and 4 HF groups were analyzed using GeneChip Mouse Expression Arrays MOE 430v2 (Affymetrix).
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Increased fat intake is associated with obesity and insulin resistance. In some individuals, a failure of pancreatic b-cells to increase insulin production in response to the high demands of obesity leads to diabetes. We sought to determine whether the impaired b- cell adaptation in obesity is associated with differential expression of genes involved in b-cell expansion and intermediary metabolism. Two strains of inbred mice prone to obesity, C57Bl/6J and AKR/J, were fed regular rodent chow or high-fat diet, after which islet morphology, secretory function and gene expression were assessed. AKR/J had lower blood glucose and higher insulin levels compared with C57Bl/6J mice on regular rodent chow or high fat diet. Insulin secretion was 3.2 fold higher in AKR/J than C57Bl/6J mice following intraperitoneal glucose injection. Likewise, glucose-stimulated insulin secretion from isolated islets was higher in AKR/J. Additionally, islet mass was 1.4 fold greater in AKR/J compared with C57Bl/6J. To elucidate the factors associated with the differences in insulin, we analyzed the gene expression profiles in pancreatic islets in AKR/J and C57Bl/6J mice. Of 14,000 genes examined, 220 were up-regulated and 286 were down-regulated in islets from diet-induced obese AKR/J mice compared with C57Bl/6J mice. Key genes involved in islet signaling and metabolism, e.g. glucagon like peptide-1 receptor, sterol Co-A desaturase 1 & 2 and fatty acid desaturase 2 were upregulated in obese AKR/J mice. The expression of multiple extracellular matrix proteins was also increased in AKR/J mice, suggesting a role in modulation of islet mass. Functional analyses of differentially regulated genes hold promise for elucidating factors linking obesity to alterations in islet function. Keywords: response to high fat diet
Project description:Increased fat intake is associated with obesity and insulin resistance. In some individuals, a failure of pancreatic b-cells to increase insulin production in response to the high demands of obesity leads to diabetes. We sought to determine whether the impaired b- cell adaptation in obesity is associated with differential expression of genes involved in b-cell expansion and intermediary metabolism. Two strains of inbred mice prone to obesity, C57Bl/6J and AKR/J, were fed regular rodent chow or high-fat diet, after which islet morphology, secretory function and gene expression were assessed. AKR/J had lower blood glucose and higher insulin levels compared with C57Bl/6J mice on regular rodent chow or high fat diet. Insulin secretion was 3.2 fold higher in AKR/J than C57Bl/6J mice following intraperitoneal glucose injection. Likewise, glucose-stimulated insulin secretion from isolated islets was higher in AKR/J. Additionally, islet mass was 1.4 fold greater in AKR/J compared with C57Bl/6J. To elucidate the factors associated with the differences in insulin, we analyzed the gene expression profiles in pancreatic islets in AKR/J and C57Bl/6J mice. Of 14,000 genes examined, 220 were up-regulated and 286 were down-regulated in islets from diet-induced obese AKR/J mice compared with C57Bl/6J mice. Key genes involved in islet signaling and metabolism, e.g. glucagon like peptide-1 receptor, sterol Co-A desaturase 1 & 2 and fatty acid desaturase 2 were upregulated in obese AKR/J mice. The expression of multiple extracellular matrix proteins was also increased in AKR/J mice, suggesting a role in modulation of islet mass. Functional analyses of differentially regulated genes hold promise for elucidating factors linking obesity to alterations in islet function. Experiment Overall Design: Microarray analyses were performed on quadruplicate RNA samples of pancreatic islets from AKR and Bl6 mice placed on high-fat diet for 3 months. Pancreases from two mice were combined to yield one sample of islet RNA. All protocols were conducted as described in the Affymetrix GeneChips Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA) using 5 μg total RNA and GeneChip Mouse Expression Arrays MOE 430 (Affymetrix).