Project description:Sphingolipids are important lipids and integral members of membranes, where they form small microdomains called lipid rafts. These rafts are enriched in cholesterol and sphingolipids, which influences biophysical properties. Interestingly, the membranes of the biomedical model organism Caenorhabditis elegans contain only low amounts of cholesterol. Sphingolipids in C. elegans are based on an unusual C17iso branched sphingoid base. In order to analyze and the sphingolipidome of C. elegans in more detail, we performed fractionation of lipid extracts and depletion of glycero- and glycerophospholipids together with in-depth analysis using UPLC-UHR-ToF-MS. In total we were able to detect 82 different sphingolipids from different classes, including several isomeric species.
Project description:The nematode Caenorhabditis elegans has evolutionarily conserved EV signaling pathways. In this study, we apply a recently published method for high specificity purification of EVs from C. elegans to carry out target-independent proteomic and RNA analysis of EVs from C. elegans. Our experiments uncovered diverse coding and non-coding RNA transcripts as well as protein cargo types commonly found in human EVs.
Project description:SEIPIN, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed C. elegans mutants deleted of the sole SEIPIN gene, seip-1. Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model seipin-associated human diseases.
Project description:Lipid identification is a major bottleneck in high-throughput lipidomics studies. We combined the in silico fragmentation tool MetFrag with LipidMaps lipid-class specific classifiers which calculate probabilities for lipid class assignments. The LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans.