Project description:Complete global brain ischemia (CGBI) and reperfusion occur following resuscitation from cardiac arrest. Different brain neurons are selectively vulnerable to CGBI: pyramidal neurons of hippocampal CA3 survive 10 min CGBI but those of CA1 die at 3 days following 10 min CGBI. CA3 neurons are expected to have more robust stress responses and repair responses than CA1 neurons. We used microarrays to compared total and polysome-bound mRNAs in CA1 and CA3 at 8 hr reperfusion after 10 min CGBI in Long Evans male rats to ascertain differences in total vs polysome-bound gene expression.
Project description:Ischemia/reperfusion injuries is a known complication to hepatic surgery. Ischemic pre- (IPC) and postconditioning (IPO) protects the liver against ischemia/reperfusion-injuries. Expression profiling were performed on liver biopsies seeking to identify molecular mediators of the protective properties. 48 rats were divided into 5 groups; sham (n=8), IRI (n=10), IPC (n=10), IPO (n=10) and IPC+IPO (n=10). All rats except sham rats were subjected to 30 min of total liver ischemia and 30 min of reperfusion before liver biopsies were sampled. In the IPC group, liver ischemia was preceded by 10 min of hepatic ischemia, followed by 10 min of reperfusion. IPO were performed by three cycles of 30 sec of reperfusion and 30 sec of ischemia, applied immediately after the 30 min of total liver ischemia. In the IPC+IPO group the two interventions were combined.
Project description:We investigated mRNA regulatory proteins of the ELAV family following 10 min global brain ischemia and 8 hrs reperfusion (8R) or non-ischemic controls (NIC) in rat hippocampal CA1 and CA3. There were three main experiments: (1) Shot-gun proteomics of polysome pellets from NIC and 8R CA1 and CA3, (2) Shot-gun proteomics of ELAV immunoprecipitate eluents from NIC and 8R CA1 and CA3, and (3) Proteomics of ELAV antisera-reactive bands excised from nitrocellulose following ELAV Western blot.
Project description:Complete global brain ischemia (CGBI) and reperfusion occur following resuscitation from cardiac arrest. Different brain neurons are selectively vulnerable to CGBI: pyramidal neurons of hippocampal CA3 survive 10 min CGBI but those of CA1 die at 3 days following 10 min CGBI. CA3 neurons are expected to have more robust stress responses and repair responses than CA1 neurons. We used microarrays to compared total and polysome-bound mRNAs in CA1 and CA3 at 8 hr reperfusion after 10 min CGBI in Long Evans male rats to ascertain differences in total vs polysome-bound gene expression. Male Long Evans rats were subjected to (1) sham operation (non-ischemic control, NIC) or normothermic CGBI of 10 min followed by 8 hr reperfusion (8R). Hippocampal CA1 and CA3 were dissected. n = 5 CA1 or CA3 were pooled to give a single replicate and there were 3 or 4 replicates per group. Post-mitochondrial supernatant (PMS) was prepared. Twenty percent of PMS was TRIzol extracted to give total RNA. The remainder was run on a 20% sucrose pad to isolate polysome pellets, which were also TRIzol extracted to give polysome RNA. Total and polysome RNA were then run on Affymetrix Rat Gene 2.0 microarrays.
Project description:We generated two mouse models of Azin1 A-to-I editing. In the first model, the editing site is locked in the edited state (AGC serine to GGC glycine). In the second model, the editing site is disrupted while preserving the codon composition (AGC serine to TCC serine). Bulk total RNA-seq was performed on kidney tissues under basal conditions and 24 hours after 20 min bilateral renal ischemia-reperfusion injury.
Project description:Purpose:Detection of differentially expressed lncRNA in the infarct zone and the control group in myocardial ischemia-reperfusion injury model tissue. Method: Use 8 weeks of C57BL/6 mice to establish a myocardial ischemia-reperfusion injury model, 45 minutes of ischemia, and 24 hours after reperfusion, the mice were sacrificed to obtain materials. Result: The expression of lncRNAs in the infarct area of myocardial ischemia-reperfusion injury model mice was detected, and it was found that a total of 43 lncRNAs related to myocardial ischemia-reperfusion injury changed in expression, of which 17 were up-regulated (fold change >1.5). 26 expressions are down-regulated (fold change <0.8)
Project description:To investigate the mechanism by which ischemic preconditioning (IPC) produces tissue tolerance to renal ischemia reperfusion injury in a pig model 15 female Yorkshire pigs were divided into three groups: 1: no IPC and 90 minutes warm ischemia; 2: remote IPC with an early window followed by 90 min warm ischemia; 3: remote IPC with a late window followed by warm ischemia 24 hrs later. Kidney tissues were obtained after 72 hours.
Project description:Rats underwent surgery for LAD ligation for 30 min followed by reperfusion. Heart ventricles were collected 2d or 7d after reperfusion. Keywords: rat heart ventricles, LAD - left anterior descending coronary artery, IR - ischemia-reperfusion
Project description:Coronary heart disease is the leading cause of death worldwide. After an acute myocardial infarction, early reperfusion reduces infarct size, which correlates with improved clinical outcomes. Paradoxically, reperfusion although relieving ischemia, accelerates apoptosis in injured cardiomyocytes, which has led to the view that myocardial salvage is futile beyond the first few hours of reperfusion. In murine hearts subjected to 90 min of coronary artery occlusion and then 48 h of reperfusion, we show transient activation of intrinsic prosurvival insulin-like growth factor-1 (IGF-1) signaling. In these hearts, acute IGF-1 receptor inhibition decreases the abundance of prosurvival signaling molecules, and markedly activates caspase-3, a potent effector of apoptosis, in infarct border zone cardiomyocytes. We found that mouse mast cell protease-4 (MMCP-4) degraded IGF-1 in vitro by a novel catalytic activity of chymases. In vivo, this degradation, which is triggered by mast cell infiltration into the peri-infarct region and MMCP-4 extravasation, between 48 and 72 h post-ischemia/reperfusion (I/R), attenuates IGF-1 prosurvival signaling. In MMCP-4-deficient mice, while infarct size is not reduced at 24 h post-I/R, at 72 h post-I/R myocardial IGF-1 levels and signaling are increased, resulting in activation of the survival kinases Akt and ERK, inhibition of caspase-3, and reduced myocardial cell death. As a consequence, I/R-mediated loss of viable myocardium, adverse cardiac remodeling and contractile impairment are markedly reduced. Cardiomyocyte survival with consequent myocardial salvage may thus be possible even days after an ischemic insult, making them a novel therapeutic target for delayed cardioprotective therapy. Group 1 is wild type C57Bl6 uninjured hearts. These mice were not undergone any surgery and used as controls. Group 2 are wild type C57Bl6 72 h post-ischemia reperfusion (IR) injury hearts. These mice for subjected to ischemia reperfusion (IR) involving 90 min of left anterior descending coronary artery occlusion followed by reperfusion for 3 days or 72 h.
Project description:The objective of this study was to test how restoration of mitochondrial respiration using AOX affects the development of cardiac ischemia-reperfusion (IR) injuries in C57BL/ 6J mice. AOX transgenic mice have Ciona intestinalis AOX coding sequence knocked into the Rosa26 locus with AOX expression controlled by a CAG promoter as described elsewhere (Szibor et al. (2017) Dis Model Mech 10: 163–171). Consequences of 45 min of cardiac ischemia were studied 3 and 9 weeks after reperfusion in both wild-type and AOX litter mates.