Project description:The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that a loss of H2A.Z in Arabidopsis does not affect the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is caused by the exclusion of H2A.Z from methylated DNA. RNA-seq and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. We find that a loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to both endogenous and exogenous stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes. Examination of DNA methylation and transcription in an h2a.z mutant
Project description:To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at ‘nucleosome-free regions’ of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression. genome-wide analysis of histone variants H2AZ, H3.3, and H3.3-H2A.Z double ChIP, plus input and genomic DNA controls in HeLa cells. H2A.Z samples are prepared under two different salt concentration conditions. (6 samples in total)
Project description:The histone variant H2A.Z plays key roles in gene expression, DNA repair, and centromere function. H2A.Z deposition is controlled by SWR-C chromatin remodeling enzymes that catalyze the nucleosomal exchange of canonical H2A with H2A.Z. Here we report that acetylation of histone H3 lysine 56 (H3-K56Ac) alters the substrate specificity of SWR-C, leading to promiscuous dimer exchange where either H2A.Z or H2A can be exchanged from nucleosomes. This result is confirmed in vivo, where genome-wide analysis demonstrates widespread decreases in H2A.Z levels in yeast mutants with hyperacetylated H3K56. Our work also suggests that a conserved SWR-C subunit may function as a M-bM-^@M-^\lockM-bM-^@M-^] that prevents removal of H2A.Z from nucleosomes. Our study identifies a histone modification that regulates a chromatin remodeling reaction and provides insights into how histone variants and nucleosome turnover can be controlled by chromatin regulators. H2A.Z ChIP seq experiments in mutants with constitutive H3K56ac
Project description:In eukaryotes, DNA wraps around histones to form nucleosomes, which are compacted into chromatin. DNA-templated processes, including transcription, require chromatin disassembly and reassembly mediated by histone chaperones. Additionally, distinct histone variants can replace core histones to regulate chromatin structure and function. Although replacement of H2A with the evolutionarily conserved H2A.Z via the SWR1 histone chaperone complex has been extensively studied, in plants little is known about how a reduction of H2A.Z levels can be achieved. Here, we show that NRP proteins cause a decrease of H2A.Z-containing nucleosomes in Arabidopsis under standard growing conditions. nrp1-1 nrp2-2 double mutants show an over-accumulation of H2A.Z genome-wide, especially at heterochromatic regions normally H2A.Z-depleted in wild-type plants. Our work suggests that NRP proteins regulate gene expression by counteracting SWR1, thereby preventing excessive accumulation of H2A.Z.
Project description:We report a genome wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators, in mouse embryonic fibroblasts depleted for Anp32e (MEFs Anp32e-/-). H2A.Z ChIP-seq in MEFs WT (+/+) or KO (-/-) for Anp32e.
Project description:The regulation of eukaryotic chromatin relies on interactions between many epigenetic factors, including histone modifications, DNA methylation, and the incorporation of histone variants. H2A.Z, one of the most conserved but enigmatic histone variants that is enriched at the transcriptional start sites of genes, has been implicated in a variety of chromosomal processes. Recently, we reported a genome-wide anticorrelation between H2A.Z and DNA methylation, an epigenetic hallmark of heterochromatin that has also been found in the bodies of active genes in plants and animals. Here, we investigate the basis of this anticorrelation using a novel h2a.z loss-of-function line in Arabidopsis thaliana. Through genome-wide bisulfite sequencing, we demonstrate that a loss of H2A.Z in Arabidopsis does not affect the level or profile of DNA methylation in genes, and we propose that the global anticorrelation between DNA methylation and H2A.Z is caused by the exclusion of H2A.Z from methylated DNA. RNA-seq and genomic mapping of H2A.Z show that H2A.Z enrichment across gene bodies, rather than at the TSS, is correlated with lower transcription levels and higher measures of gene responsiveness. We find that a loss of H2A.Z causes misregulation of many genes that are disproportionately associated with response to both endogenous and exogenous stimuli. We propose that H2A.Z deposition in gene bodies promotes variability in levels and patterns of gene expression, and that a major function of genic DNA methylation is to exclude H2A.Z from constitutively expressed genes.
Project description:Nucleosome is the basic structural unit of chromatin, and its dynamics plays critical roles in the regulation of genome functions. However, how the nucleosome structure is regulated by histone variants in vivo is still largely uncharacterized. Here, by employing Micrococcal nuclease (MNase) digestion of crosslinked chromatin followed by chromatin immunoprecipitation (ChIP) and paired-end sequencing (MNase-X-ChIP-seq), we mapped genome-wide unwrapping states of nucleosomes containing histone variant H2A.Z in mouse embryonic stem (ES) cells. We found that H2A.Z is enriched with unwrapped nucleosomes. Interestingly, the function of +1 H2A.Z nucleosome in transcriptional regulation is correlated with the unwrapping states. We further showed that H2A.Z nucleosomes adjacent the CTCF binding sites (CBS) may adopt an open conformation. We confirmed the unwrapping state of H2A.Z nucleosomes under native condition by re-ChIP of H2A.Z after CTCF CUT&RUN in mouse ES cells. Importantly, we found that depletion of H2A.Z results in increased CTCF binding, indicating dynamic competition between the unwrapped H2A.Z nucleosomal intermediates and CTCF at the CBS. Taken together, our results showed that histone variant H2A.Z regulates transcription and CTCF binding through modulating the nucleosome unwrapping.
Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:How histone intrinsic sequence variation or regulatory modifications regulate nucleosome interactions with transcription remain unclear. To clarify this question, we examined how histone variants and histone modifications assemble in the Arabidopsis thaliana genome, identifying a limited number of chromatin states that divide euchromatin and heterochromatin in biologically significant subdomains. We showed that histone variants were as significant as histone modifications to determine the composition of chromatin states. The loss of function of the chromatin remodeler DECREASED IN DNA METHYLATION (DDM1) prevented the exchange between the histone variants H2A.Z and H2A.W over transposons resulting in their enrichment in chromatin states found only on proteins coding genes in the wild type. Hence, the dynamics of histone H2A variants exchange impacted the definition and distribution of chromatin states. We propose that dynamics of histone variants control the organization of histone modifications into chromatin states to achieve landmarks that signify the ability for transcription. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) for histone H2A variants and histone modifications in seedlings .