Project description:In the context of replacing fish meal and fish oil in feeds for aquaculture, rainbow trout alevins received from first-feeding onwards, one of the three experimental diets: V (100% plant-based), C (mix of FM-FO & plant ingredients) or M (100% FM-FO based). The long term effects of such dietary replacement on the intestinal (mid gut) and hepatic transcriptome were studied in juveniles after a 7-month feeding trial at 7°C.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods. Two-condition experiment, small vs. large-fish muscle cells. Sept. and Dec. spawning fish. Biological replicates: 4 small replicates, 4 large replicates for each time period.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods. Two-condition experiment, small vs. large-fish liver cells. Sept. and Dec. spawning fish. Biological replicates: 4 small replicates, 4 large replicates for each time period.
Project description:The objective of this study was to identify and quantify proteomic profiles of spleen of rainbow trout Oncorhynchus mykiss. Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between 9 aquaria, 18 fish per aquarium. The test groups were infected by immersion of Yersinia ruckeri strains: CSF007-82 (biotype 1) and 7959-11 (biotype 2). The control group was immersed similar with sterile broth medium. There were 3 aquaria per each group (CSF007-82-infected, 7959-11-infected and control). Nine fish from infected and control fish groups were anaesthetized with MS-222 at 3, 9 and 28 days post exposure and sampled aseptically. Each spleen was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Spleen samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring. Small vs. large-fish liver and muscle cells from neomale offspring. Biological replicates: 4 small replicates, 4 large replicates.
Project description:The objective of this study was to identify and quantify proteomic profiles of head kidney of rainbow trout Oncorhynchus mykiss. Specific pathogen free rainbow trout (mean length 15 ± 1 cm) were maintained in recirculating de-chlorinated water at 19±1 °C. Prior to the experiment, fish were distributed between 9 aquaria, 18 fish per aquarium. The test groups were infected by immersion of Yersinia ruckeri strains: CSF007-82 (biotype 1) and 7959-11 (biotype 2). The control group was immersed similar with sterile broth medium. There were 3 aquaria per each group (CSF007-82-infected, 7959-11-infected and control). Nine fish from infected and control fish groups were anaesthetized with MS-222 at 3, 9 and 28 days post exposure and sampled aseptically. Each head kidney was washed three times with sterile phosphate-buffered saline containing a cocktail of mammalian protease inhibitors. Head kidney samples were snap-frozen in liquid nitrogen and stored at –80 °C.
Project description:The sustainable development of modern aquaculture must rely on a significant reduction of the fish meal (FM) used in aquafeed formulations. However, FM substitution with alternative ingredients in diets for carnivorous fish species often showed reduced nutrient absorption, significantly perturbed metabolisms and histological changes at both hepatic and intestinal level. In the present study, adult rainbow trout (Oncorhynchus mykiss) were fed three different experimental aquafeed formulations. A control diet with higher FM content (27.3%) than two test formulations in which fish meal was substituted with two more sustainable and promising alternatives: insect meal (Hermetia illucens larvae=10.1%, FM=11.6%) and poultry by-products meal (PBM=14.8%; FM=11.7%). Combined metabolomics and proteomics analyses of fish liver, together with histological examination of liver and intestine demonstrated that a well balanced formulation of nutrients in the three diets allowed high metabolic compatibility of either substitutions, paving the way for innovative and sustainable use of novel raw materials for the fish feed industry. Results show that the main metabolic pathways of nutrient absorption and catabolism were essentially unaltered by alternative feed ingredients, and also histological alterations were negligible. It is demonstrated that substitution of fish meal with sustainable alternatives does not impact on fish metabolism, given proper efforts are put in fulfilling nutritional requirements of rainbow trout.