Project description:Smallpox has played an unparalleled role in human history and remains a significant potential threat to public health. Despite the historical significance of this disease, we know little about the underlying pathophysiology or the virulence mechanisms of the causative agent, variola virus. To improve our understanding of variola pathogenesis and variola-host interactions, we examined the molecular and cellular features of hemorrhagic smallpox in cynomolgus macaques. We used cDNA microarrays to analyze host gene expression patterns in sequential blood samples from each of 22 infected animals. Variola infection elicited striking and temporally coordinated patterns of gene expression in peripheral blood. Of particular interest were features that appear to represent an IFN response, cell proliferation, immunoglobulin gene expression, viral dose-dependent gene expression patterns, and viral modulation of the host immune response. The virtual absence of a tumor necrosis factor /NF-B-activated transcriptional program in the face of an overwhelming systemic infection suggests that variola gene products may ablate this response. These results provide a detailed picture of the host transcriptional response during smallpox infection, and may help guide the development of diagnostic, therapeutic, and prophylactic strategies.
Project description:Smallpox has played an unparalleled role in human history and remains a significant potential threat to public health. Despite the historical significance of this disease, we know little about the underlying pathophysiology or the virulence mechanisms of the causative agent, variola virus. To improve our understanding of variola pathogenesis and variola-host interactions, we examined the molecular and cellular features of hemorrhagic smallpox in cynomolgus macaques. We used cDNA microarrays to analyze host gene expression patterns in sequential blood samples from each of 22 infected animals. Variola infection elicited striking and temporally coordinated patterns of gene expression in peripheral blood. Of particular interest were features that appear to represent an IFN response, cell proliferation, immunoglobulin gene expression, viral dose-dependent gene expression patterns, and viral modulation of the host immune response. The virtual absence of a tumor necrosis factor /NF-B-activated transcriptional program in the face of an overwhelming systemic infection suggests that variola gene products may ablate this response. These results provide a detailed picture of the host transcriptional response during smallpox infection, and may help guide the development of diagnostic, therapeutic, and prophylactic strategies. Groups of assays that are related as part of a time series. Keywords: time_series_design Using regression correlation
Project description:Smallpox has played an unparalleled role in human history and remains a significant potential threat to public health. Despite the historical significance of this disease, we know little about the underlying pathophysiology or the virulence mechanisms of the causative agent, variola virus. To improve our understanding of variola pathogenesis and variola-host interactions, we examined the molecular and cellular features of hemorrhagic smallpox in cynomolgus macaques. We used cDNA microarrays to analyze host gene expression patterns in sequential blood samples from each of 22 infected animals. Variola infection elicited striking and temporally coordinated patterns of gene expression in peripheral blood. Of particular interest were features that appear to represent an IFN response, cell proliferation, immunoglobulin gene expression, viral dose-dependent gene expression patterns, and viral modulation of the host immune response. The virtual absence of a tumor necrosis factor /NF-B-activated transcriptional program in the face of an overwhelming systemic infection suggests that variola gene products may ablate this response. These results provide a detailed picture of the host transcriptional response during smallpox infection, and may help guide the development of diagnostic, therapeutic, and prophylactic strategies. Groups of assays that are related as part of a time series. Keywords: time_series_design
Project description:The poxviruses are a family of linear double-stranded DNA viruses about 130 to 230 kbp, that belong to the family Poxviridae. The poxviruses have an animal origin and have evolved to infect a wide host range. Variola virus (VARV), the causative agent of smallpox, is a poxvirus that infect only humans, but other poxviruses such monkey pox virus and cowpox virus have also across over from animals to infect humans. Therefor understanding the biology of poxviruses can help to devise antiviral strategies. In this study we used a system-based approach to examine the host responses to three different orthopoxviruses, CPXV, VACV and ECTV in the murine macrophage RAW 264.7 cell line.