Project description:To further explore the underlying mechanisms of the protection functions of human milk exosmes, high throughput sequencings were used to identify differentially expressed lncRNA and mRNA profiles between human milk exosomes form term human breast milk (Term-Exos) and preterm human breast milk (Pre-Exos).
Project description:Breast milk is a complex liquid that enriched in immunological components and affect the development of the infant immune system. Exosomes, the membranous vesicles of endocytic origin, are ubiquitously in various body fluids which can mediate intercellular communication. MicroRNAs (miRNAs), a well-defined group of non-coding small RNAs, in human breast milk are packaged inside exosomes. Here, we present the identification of miRNAs in human breast milk exosomes using deep sequencing technology. We found that the immune-related miRNAs are enriched in breast milk exosomes, and are resistant to the general harsh conditions.
Project description:untargeted metabolomics (RPLC, negative mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk
Project description:untargeted metabolomics (RPLC, positive mode) on human milk samples to investigate the presence of maternal drugs and dietary factors in breast milk